scholarly journals Influence of biostimulants and media compositions on growth and yield of Capsicum annuum L. under drought stress conditions

2021 ◽  
Vol 35 (2) ◽  
Author(s):  
Budiyati Ichwan ◽  
Eliyanti Eliyanti ◽  
Zulkarnain Zulkarnain

The study was conducted at the Teaching and Research Farm of Agricultural Faculty, University of Jambi, Indonesia, from April through to September 2019. The aim of this study was to investigate the effect of biostimulants and media compositions on the growth and yield of chili pepper during restricted soil water content. The study was arranged in a split plot design with 3 replicates (groups). Different types of biostimulants (Citorin®, Hantu®, and a control) were designated as main plot, whereas media compositions (2:2:1, 2:1:1, 1:2:1 and 1:1:2) made of soil+trichocompost+rice husk charcoal were employed as sub plot. At the time of transplanting, soil water content was set to approximately 75% of field capacity to create stress conditions. The results showed that the proper choice of biostimulant and medium composition could increase nutrient status, total sugar and chlorophyll contents, and reduce proline level in plants grown under restricted water availability. Citorin® application on chili plants grown on organic media (soil+trichocompost+rice husk charcoal) with ratio of 2:1:1 could be recommended to support plant growth and production under drought stress conditions.

Weed Science ◽  
2011 ◽  
Vol 59 (1) ◽  
pp. 50-54 ◽  
Author(s):  
Jared J. Schmidt ◽  
Erin E. Blankenship ◽  
John L. Lindquist

Soil water availability is the most important factor limiting crop yield worldwide. Understanding crop and weed transpiration in response to water supply may provide valuable insight into the mechanisms of crop yield loss in water-limited environments. A greenhouse experiment was conducted to quantify corn and velvetleaf transpiration in response to drying soil. Five plants of each species were well watered by adding back the equivalent water loss each day to reach field capacity, and five plants were subjected to drought stress (dry-down) by not replacing lost water. Normalized daily transpiration of dry-down plants was regressed on soil water content expressed as the fraction of transpirable soil water (FTSW). The critical soil water content below which plants begin to close their stomates occurred at FTSWcr= 0.36 ± 0.015 for corn and 0.41 ± 0.018 for velvetleaf. Total water transpired did not differ among species. Velvetleaf also responded to drought by senescing its oldest leaves, whereas corn mainly maintained its leaf area but with rolled leaves during peak drought stress. During a short-term drought, corn is expected to perform better than velvetleaf because it maintains full transpiration to a lower FTSW and does not senesce its leaves. Under severe long-term drought, the species that closes its stomates at greater FTSWcrwill conserve water and increase its chances of survival. Moreover, senescing all but the youngest leaves may ensure at least some seed production. Research is needed to evaluate the effects of soil water supply on corn–velvetleaf interference in the field.


2020 ◽  
Vol 5 (1) ◽  
pp. 117-125
Author(s):  
◽  
Iqbal Effendy

AbstractRice (Oryza sativa L.) production is important in the national food of Indonesia. The growth and yield of rice can be increased by the soil water supply and biochar application into the soil in a polybag. Water is a unique material resource that plays a vital role in agriculture. Biochar is a carbon-rich product obtained from biomass and can hold water and nutrients, making them more available to plants. The biochar used in this study was made from rice husks. This study aims to determine the effect of soil water content and biochar application in the soil on the growth and yield of rice in the polybag. The experiment appears to be a randomized multifactorial design with one factor being water content and the other being biochar application rate. A completely random design usually suggests only one factor in the experimental design. The first factor was soil water content consisting of two levels, i.e.: field capacity and soil waterlogging. The second factor was the biochar application consisting of four doses i.e.: 0; 14; 28; and 42 tons/ha. The results of the research showed that rice cultivation with soil water-logging is better than field capacity on the tillers number, panicle length, and harvest index. Without biochar application was given higher tillers number, but biochar dose of 14 tons/ha produced wider leaf area. There was a significant interaction between soil water content and biochar application on the dry weight of roots, shoots, and grains. The treatment combination of soil waterlogging and biochar dose of 14 tons/ha was most effective at increasing the growth and yield of rice in a polybag.


1997 ◽  
Vol 24 (1) ◽  
pp. 19-24 ◽  
Author(s):  
P. J. Sexton ◽  
J. M. Bennett ◽  
K. J. Boote

Abstract Peanut (Arachis hypogaea L.) fruit growth is sensitive to surface soil (0-5 cm) conditions due to its subterranean fruiting habit. This study was conducted to determine the effect of soil water content in the pegging zone (0-5 cm) on peanut pod growth rate and development. A pegging-pan-root-tube apparatus was used to separately control soil water content in the pegging and root zone for greenhouse trials. A field study also was conducted using portable rainout shelters to create a soil water deficit. Pod phenology, pod and seed growth rates, and final pod and seed dry weights were determined. In greenhouse studies, dry pegging zone soil delayed pod and seed development. In the field, soil water deficits in the pegging and root zone decreased pod and seed growth rates by approximately 30% and decreased weight per seed from 563 to 428 mg. Pegs initiating growth during drought stress demonstrated an ability to suspend development during the period of soil water deficit and to re-initiate pod development after the drought stress was relieved.


Author(s):  
MUHAMMAD ASLAM ALI ◽  
SANJIT CHANDRA BARMAN ◽  
MD. ASHRAFUL ISLAM KHAN ◽  
MD. BADIUZZAMAN KHAN ◽  
HAFSA JAHAN HIYA

Climate change and water scarcity may badly affect existing rice production system in Bangladesh. With a view to sustain rice productivity and mitigate yield scaled CH4 emission in the changing climatic conditions, a pot experiment was conducted under different soil water contents, biochar and silicate amendments with inorganic fertilization (NPKS). In this regard, 12 treatments combinations of biochar, silicate and NPKS fertilizer along with continuous standing water (CSW), soil saturation water content and field capacity (100% and 50%) moisture levels were arranged into rice planted potted soils. Gas samples were collected from rice planted pots through Closed Chamber technique and analyzed by Gas Chromatograph. This study revealed that seasonal CH4 emissions were suppressed through integrated biochar and silicate amendments with NPKS fertilizer (50–75% of the recommended doze), while increased rice yield significantly at different soil water contents. Biochar and silicate amendments with NPKS fertilizer (50% of the recommended doze) increased rice grain yield by 10.9%, 18.1%, 13.0% and 14.2%, while decreased seasonal CH4 emissions by 22.8%, 20.9%, 23.3% and 24.3% at continuous standing water level (CSW) (T9), at saturated soil water content (T10), at 100% field capacity soil water content (T11) and at 50% field capacity soil water content (T12), respectively. Soil porosity, soil redox status, SOC and free iron oxide contents were improved with biochar and silicate amendments. Furthermore, rice root oxidation activity (ROA) was found more dominant in water stress condition compared to flooded and saturated soil water contents, which ultimately reduced seasonal CH4 emissions as well as yield scaled CH4 emission. Conclusively, soil amendments with biochar and silicate fertilizer may be a rational practice to reduce the demand for inorganic fertilization and mitigate CH4 emissions during rice cultivation under water stress drought conditions.


2002 ◽  
Vol 82 (4) ◽  
pp. 855-859 ◽  
Author(s):  
M. L. Leblanc ◽  
D. C. Cloutier ◽  
C. Hamel

A 2-year field study was conducted in corn to determine the influence of rainfall, irrigation and soil water content on common lambsquarters and barnyardgrass emergence. Rainfall or irrigation had no influence on the final weed density and little on the pattern of weed emergence because the soil water content was at or greater than field capacity during the main weed emergence period. Irrigation may hasten the first weed emergence by warming the soil when temperature is limiting for germination. In southwestern Quebec, temperature appears to be the most important factor regulating germination in the spring since soil moisture is normally at field capacity for a long period, in part because of the melting of snow. Key words: Irrigation, weed emergence, soil moisture


2011 ◽  
Vol 90-93 ◽  
pp. 3262-3267
Author(s):  
Wen Yuan Xu ◽  
Long Sun ◽  
Li Qiang Mu

The drought resistance adaptation mechanism of highway greening plants was always the focal point which the researcher payed attention. This experiment took Cornus alba as the study object and examines its resistance to drought stress by using the potting and water control method. The researcher measured bond water content, water saturation deficit, relevant water content, relevant content of osmotic water, and osmotic potential when full turgor and turgor were both zero. Other water condition indexes also were analyzed systematically. Finally, a comprehensive evaluation on the drought resistance of Cornus alba by fuzzy mathematics’ anti-membership function was conducted. According to the experiment result, Cornus alba had the highest drought resistance at B-level treatment (soil water content: 53.60%), followed by D-level (soil water content: 29.90%) treatment. Cornus alba had strong endurance and resistance to drought stress. This study could provide a scientific basis for the future introduction of other urban greenbelt plants and the choice of excellent traits.


2014 ◽  
Vol 94 (3) ◽  
pp. 435-452 ◽  
Author(s):  
S. Liu ◽  
J. Y. Yang ◽  
C. F. Drury ◽  
H. L. Liu ◽  
W. D. Reynolds

Liu, S., Yang, J. Y., Drury, C. F., Liu, H. L. and Reynolds, W. D. 2014. Simulating maize (Zea mays L.) growth and yield, soil nitrogen concentration, and soil water content for a long-term cropping experiment in Ontario, Canada. Can. J. Soil Sci. 94: 435–452. A performance assessment of the Decision Support Systems for Agrotechnology Transfer (DSSAT) model (v4.5) including the CERES-Maize and CENTURY modules was conducted for continuous maize production under annual synthetic fertilization (CC-F) and no fertilization (CC-NF) using field data from a long-term (53-yr) cropping experiment in Ontario, Canada. The assessment was based on the accuracy with which DSSAT could simulate measured grain yield, above-ground biomass, leaf area index (LAI), soil inorganic nitrogen concentration, and soil water content. Model calibration for maize cultivar was achieved using grain yield measurements from CC-F between 2007 and 2012, and model evaluation was achieved using soil and crop measurements from both CC-F and CC-NF for the same 6-yr period. Good model–data agreement for CC-F grain yields was achieved for calibration (index of agreement, d=0.99), while moderate agreement for CC-NF grain yields was achieved for evaluation (d=0.79). Model–data agreement for above-ground biomass was good (d=0.83–1.00), but the model consistently underestimated for CC-F and overestimated for CC-NF. DSSAT achieved good model–data agreement for LAI in CC-F (d=0.82–0.99), but moderate to poor agreement in CC-NF (d=0.46–0.64). The CENTURY module of DSSAT simulated soil inorganic nitrogen concentrations with moderate to good model–data agreement in CC-F (d=0.74–0.88), but poor agreement in CC-NF (d=0.40–0.50). The model–data agreement for soil water content was moderate in 2007 and 2008 for both treatments (d=0.60–0.76), but poor in 2009 (d=0.46–0.53). It was concluded that the DSSAT cropping system model provided generally good to moderate simulations of continuous maize production (yield, biomass, LAI) for a long-term cropping experiment in Ontario, Canada, but generally moderate to poor simulations of soil inorganic nitrogen concentration and soil water content.


Agrologia ◽  
2018 ◽  
Vol 3 (2) ◽  
Author(s):  
Yugi R Ahadiyat ◽  
T Harjoso ◽  
Ismangil Ismangil

The objective of this study was to determine characters of several drought tolerance and high yield upland rice variety under low soil water content in intercrops rice – grass system. The study was carried out in rain water irrigation area of Banjaranyar village. Experimental design was Split Plot Design with three replicates. The  Main plot was grass i.e no grass, elephant grass and lemon grass while  sub plot was upland rice variety i.e. Situ Patenggang, Kalimutu, Danau Gaung, Jatiluhur dan Cisokan. Under very low soil water content (<12%), there was growth and yield differenc between rice varieties grown in intercrops system with grass. Eventhough there was no effect of this intercrop system on plant growth of upland rice, elephant grass promote  higher rice yield, 0.88 t/ha than that without grass (0.39 t/ha) and with lemongrass (0.60 t/ha). Kalimutu variety showed the higher yield (1.38 t/ha)  with plant height  up to 46.27 cm and leaf area up to 4.63 cm2.


2021 ◽  
Author(s):  
Shabnam Gohari ◽  
Ali Imani ◽  
AliReza Talaei ◽  
Vahid Abdossi ◽  
Mohamad Reza Asghari

Abstract Background Almonds ( Prunus amygdalus Batsch, syn. P. dulcis (Mill.) DA Webb) is a valuable nut crops species that is widely is cultivated in arid and semi-arid regions of Iran, due to drought tolerance and dehydration under drought stress. Almonds show physiological adaptations for survival in drought stress conditions, but the degree Drought adaptation varies between cultivars. However, to date, its morphological and physiological responses to drought, and the underlying mechanisms are not well understood. This study was aimed to investigate the morphological and physiological changes of almond genotypes under drought stress. almond genotypes were planted in pots and subjected to four levels of soil water treatments: above 80% (control), 60% (light stress), and 40% (severe stress) of field capacity. Results Within the total stress period (0–30 days), almond genotypes grew rapidly in the light stress, whereas severe stress had a negative impact on growth. So that, in this study, 10 selected almond genotypes using some morphological traits such as: plant height, trunk diameter at the top of the graft, new branch growth length, leaf yellowness and some physiological indicators under drought stress conditions such as Chlorophyll index was evaluated based on SPAD criterion, relative leaf water content, measurement of chlorophyll fluorescence and Organic Osmoprotectants to identify drought-resistant and sensitive genotypes under drought stress conditions. Among the selected genotypes studied, genotype A-7-100 was the most resistant and genotype A-124-1 was the most sensitive to drought stress. Conclusions Our results show that almond genotypes adapt to drought mainly by avoidance mechanisms, and its morphological and physiological characteristics are inhibited under severe stress, However, the degree of drought adaptation varies between different cultivars. These findings might help limited water resources to be fully used for increased the percentage of kernel and finally increased the growth and yield of plants under water stress.


Sign in / Sign up

Export Citation Format

Share Document