scholarly journals NOISE REDUCTION OF ROOF FANS OF THE CENTRAL HEATING STATION

Akustika ◽  
2019 ◽  
Vol 32 ◽  
pp. 158-162
Author(s):  
Dmitry Chugunkov ◽  
Galina Seyfelmlyukova

This article presents the results of an acoustic survey of several powerful central heating stations located in dense residential buildings of the metropolis. It is shown that the most powerful sources of noise for the surrounding residential area are roof fans of the ventilation system central heating stations. A description and test results of the original design silencer for roof fans, developed and patented by the authors, are given. It is noted that the developed design of the silencer does not affect the performance of the ventilation system.

2018 ◽  
Vol 49 ◽  
pp. 00025 ◽  
Author(s):  
Tomasz Gaczoł

In the following article the author proposes the solution for a properly functioning natural ventilation system based on the use of supply and exhaust ducts, i.e. by designing a natural balanced ventilation system. The paper is devoted to test results of air flow through natural ventilation supply-exhaust ducts in the rooms located on the lower floor of the building. The simulations conducted in ANSYS Fluent software relate to such issues as: pressure system inside the room and in the exhaust duct, distribution of air temperatures in the room, vector direction of airflow through supplyexhaust ducts and in the analysed room. Three types of solutions were selected for the tests: air inflow into the room through the air intake located at the basement level, air inflow through the window ventilator (although no longer used, this solution can be found in many existing residential buildings) and the natural ventilation system supported with the so-called “solar chimney”. All simulations were conducted with an outdoor temperature of +3 degrees C. The indoor temperature is + 20 degrees C, considered to be the minimum thermal comfort level. In the era of common building sealing, the presented ventilation system may be a good solution that guarantees proper functioning of natural ventilation. In all cases presented, it meets the normative regulations and requirements for the ventilation air stream and the air exchange rate in the room. The paper (first part) describes test results concerning the room located on the lower floor of the building, i.e. with a short supply duct and a 12-meter long exhaust duct.


Akustika ◽  
2021 ◽  
pp. 267
Author(s):  
Olga Solovieva ◽  
Yuri Elkin

An article discusses the problem of noise reduction in a residential area located in the immediate vicinity of construction sites. Since construction sites are often located at a short distance from existing residential buildings, it will be ineffective to install only a conventional noise barrier - walls. In this regard, we have developed a classification of shielding noise protection structures for construction sites, the complex application of which will make it possible to achieve standard noise levels in the adjacent residential area. The article presents the efficiency calculation and designs of two screens (perimeter and intra-sectoral) of five indicated in classification types.


2018 ◽  
Vol 49 ◽  
pp. 00026
Author(s):  
Tomasz Gaczoł

The paper is devoted to test results of air flow through natural ventilation supply-exhaust ducts in the rooms located on the upper floor of the building that were conducted in ANSYS Fluent software. Three types of solutions were selected for the tests: air inflow into the room through the air intake located at the basement level, air inflow through the window ventilator (although no longer used, this solution can be found in many existing residential buildings) and the natural ventilation system supported with the so-called “solar chimney” that is usually a glass superstructure, located on the roof of the building above the ventilation ducts. All simulations were conducted with an outdoor temperature of +3 degrees C. The indoor temperature is + 20 degrees C, considered to be the minimum thermal comfort level. The simulations concerned such issues as: pressure system inside the room and in the exhaust duct, distribution of air temperatures in the room, vector direction of air flow through supply and exhaust ducts and in the room. Tests conducted using a computer method of air flow analysis in ducts and in the analysed room indicate that the developed natural balanced ventilation system is a good solution, especially when building sealing is so common. In all cases presented, it meets the normative regulations and requirements for the ventilation air stream and the air exchange rate in the room. The paper (second part) describes test results concerning the room located on the upper floor of the building, i.e. with a long 9-meter long supply duct and a short 3-meter long exhaust duct.


Author(s):  
Junaidah Jailani ◽  
◽  
Norsyalifa Mohamad ◽  
Muhammad Amirul Omar ◽  
Hauashdh Ali ◽  
...  

According to the National Energy Balance report released by the Energy Commission of Malaysia in 2016, the residential sector uses 21.6% of the total energy in Malaysia. Residents waste energy through inefficient energy consumption and a lack of awareness. Building occupants are considered the main factor that influences energy consumption in buildings, and to change energy consumption on an overall scale, it is crucial to change individual behaviour. Therefore, this study focused on analysing the energy consumption pattern and the behaviour of consumers towards energy consumption in their homes in the residential area of Batu Pahat, Johor. A self-administrated questionnaire approach was employed in this study. The findings of this study showed that the excessive use of air conditioners was a significant factor in the increasing electricity bills of homeowners as well as the inefficient use of electrical appliances. Also, this study determined the effect of awareness on consumer behaviour. This study recommends ways to help minimise energy consumption in the residential area.


2018 ◽  
Vol 878 ◽  
pp. 202-209 ◽  
Author(s):  
Feng Qian ◽  
Li Yang

The natural ventilation of residential areas has placed more and more emphasis on residential area planning, according to the relationship between natural ventilation environments and the layout of architecture, we can reduce the energy consumption and the adverse effect of wind outdoors, improve the living environment and quality of life, making harmony between human and the nature. In this paper, we use Air-Pak to simulate the wind environment of residential areas. Through analyzing and simulating the air field which forms when the wind blows around the residential buildings by Air-Pak, we explain the advantage of the combination of computer simulation software and residential area planning. And we give some advice to the layout of the outdoor environment early in the residential planning area by the simulation of outdoor environments of buildings.


Author(s):  
Jerzy Sowa ◽  
Maciej Mijakowski

A humidity-sensitive demand-controlled ventilation system is known for many years. It has been developed and commonly applied in regions with an oceanic climate. Some attempts were made to introduce this solution in Poland in a much severe continental climate. The article evaluates this system's performance and energy consumption applied in an 8-floor multi-unit residential building, virtual reference building described by the National Energy Conservation Agency NAPE, Poland. The simulations using the computer program CONTAM were performed for the whole hating season for Warsaw's climate. Besides passive stack ventilation that worked as a reference, two versions of humidity-sensitive demand-controlled ventilation were checked. The difference between them lies in applying the additional roof fans that convert the system to hybrid. The study confirmed that the application of demand-controlled ventilation in multi-unit residential buildings in a continental climate with warm summer (Dfb) leads to significant energy savings. However, the efforts to ensure acceptable indoor air quality require hybrid ventilation, which reduces the energy benefits. It is especially visible when primary energy use is analyzed.


Author(s):  
Angela Liu ◽  
David Carradine

The goal of this study is to develop a racking model of plasterboard-sheathed timber walls as part of the efforts towards performance-based seismic engineering of low-rise light timber-framed (LTF) residential buildings in New Zealand. Residential buildings in New Zealand are primarily stand-alone low-rise LTF buildings, and their bracing elements are commonly plasterboard-sheathed LTF walls. It is an essential part of performance-based seismic designs of LTF buildings to be able to simulate the racking performance of plasterboard walls. In this study, racking test results of 12 plasterboard walls were collected and studied to gain insight into the seismic performance of plasterboard-sheathed LTF walls. The racking performance of these walls was examined in terms of stiffness/strength degradation, displacement capacity, superposition applicability and failure mechanisms. Subsequently, a mathematical analysis model for simulating racking performance of LTF plasterboard walls is developed and presented. The developed racking model is a closed-form wall model and could be easily used for conducting three-dimensional non-linear push-over studies of seismic performance of LTF buildings.


Author(s):  
Abdul Mosaur Waseel ◽  
Najib Rahman Sabory ◽  
Hameedullah Zaheb ◽  
Abdul Kareem Waseel

Production of required thermal energy to heat residential buildings is a considerable issue in energy studies. Kabul city is a city in which the coal-fired central heating systems for providing the mentioned energy is in expansion process. And, coal as feeding source of these systems with generation of carbon dioxide (CO2) is the main cause of greenhouse gases (GHGs) emissions in winter. Fortunately, Kabul city has maximum solar radiation in summer warm season which can be used for fulfilling of this demand in winter cold season. The method which can perform this task is the central heating by seasonal sensible heat storage of solar thermal energy. But, the economic and environmental feasibility and viability of this method is a discussable issue. In this study, the central heating by seasonal sensible heat storage of solar thermal energy and its economic and environmental feasibility and viability is studied. It is tried that this system is compared in a logical method with current coal-fired systems. The economic feasibility study is accomplished by comparison of initial or capital cost and annual operation and maintenance cost with the usage of existing data and thermodynamic analytic methods. The environmental viability study is accomplished by comparison of annual emissions of CO2 with the usage of online emissions calculator. Unfortunately, it is found that seasonal sensible heat storage of solar thermal energy is not an economically feasible method for central heating due to its high initial cost and cannot be used in an economically beneficial manner for central heating. But fortunately, it is an environmentally viable method and environmentally friendly way due to its no and/or zero CO2 emissions. To sum up, it is suggested that, this method should be used for district heating which can make this system economically feasible.


2020 ◽  
Vol 10 (12) ◽  
pp. 4336
Author(s):  
Yue Hu ◽  
Per Kvols Heiselberg ◽  
Tine Steen Larsen

A ventilated window system enhanced by phase change material (PCM) has been developed, and its energy-saving potential examined in previous works. In this paper, the ventilation control strategies are further developed, to improve the energy-saving potential of the PCM energy storage. The influence of ventilation airflow rate on the energy-saving potential of the PCM storage is firstly studied based on an EnergyPlus model of a sustainable low energy house located in New York. It shows that in summer, the optimized ventilation airflow rate is 300 m3/h. The energy-saving of utilizing a ventilated window with PCM energy storage is 10.1% compared to using a stand-alone ventilated window, and 12.0% compared to using a standard window. In winter, the optimized ventilation airflow rate is 102 m3/h. The energy-saving of utilizing a ventilated window with PCM energy storage is 26.6% compared to using a stand-alone ventilated window, and 32.8% compared to using a standard window. Based on the optimized ventilation airflow rate, a demand control ventilation strategy, which personalizes the air supply and heat pump setting based on the demand of each room, is proposed and its energy-saving potential examined. The results show that the energy savings of using demand control compared to a constant ventilation airflow rate in the house is 14.7% in summer and 30.4% in winter.


Sign in / Sign up

Export Citation Format

Share Document