scholarly journals The comparison of antioxidant enzyme activities in Quince Fruit (Cydonia Oblonga) grown in Van, Ankara and İzmir

2019 ◽  
Vol 6 (11) ◽  
pp. 301-304
Author(s):  
Halit Demir ◽  
Canan Demir

Objective: In this study, it was aimed to determine the activity of some antioxidant enzymes in the quince fruit (Cydonia Oblonga) which grown in different regions of Turkey. Materials and Methods: For this study, firstly, quince fruit grown in different provinces such as Van, Ankara and İzmir was obtained for this study. Then, extracts of quince fruit were prepared and antioxidant enzyme activities were determined by spectrophotometric method. The findings were analyzed using statistical methods and the results were interpreted. Results: The difference between the means in terms of Superoxide Dismutase, Catalase and Glutathione Reductase (SOD, CAT and GR) enzyme levels was found to be statistically significant for quince fruit grown in Van, Ankara and İzmir (p <0.05). Accordingly, CAT, SOD and GR levels in quince fruit grown in İzmir were significantly higher than other regions. Conclusion: As a result, the antioxidant property of quince fruit seems to be very important. The consumption of quince fruit especially in winter can be protective against some diseases, especially winter diseases. Further research on quince fruit should be done.

1989 ◽  
Vol 66 (2) ◽  
pp. 1003-1007 ◽  
Author(s):  
C. W. White ◽  
P. Ghezzi ◽  
S. McMahon ◽  
C. A. Dinarello ◽  
J. E. Repine

Pretreatment with the combination of tumor necrosis factor/cachectin (TNF/C) and interleukin 1 (IL-1) increased glucose-6-phosphate dehydrogenase (G6PDH), glutathione reductase (GR), glutathione peroxidase (GPX), catalase (CAT), and superoxide dismutase (SOD) activities in lungs of rats continuously exposed to hyperoxia for 72 h, a time when all untreated rats had already died. Pretreatment with TNF/C and IL-1 also increased, albeit slightly, lung G6PDH and GR activities of rats exposed to hyperoxia for 4 or 16 h. By comparison, no differences occurred in lung antioxidant enzyme activities of TNF/C and IL-1- or saline-pretreated rats exposed to hyperoxia for 36 or 52 h; the latter is a time just before untreated rats began to succumb during exposure to hyperoxia. The results raise the possibility that TNF/C and IL-1 treatment can increase lung antioxidant enzyme activities and that increased lung antioxidant enzymes may contribute to the increased survival of TNF/C and IL-1-pretreated rats in hyperoxia for greater than 72 h.


2008 ◽  
Vol 28 (2) ◽  
pp. 73-81 ◽  
Author(s):  
Chandramani Pathak ◽  
Yogesh K. Jaiswal ◽  
Manjula Vinayak

Constant generation of ROS (reactive oxygen species) during normal cellular metabolism of an organism is generally balanced by a similar rate of consumption by antioxidants. Imbalance between ROS production and antioxidant defence results in an increased level of ROS, causing oxidative stress, which leads to promotion of malignancy. Queuine is a hyper-modified base analogue of guanine, found at the first anticodon position of the Q-family of tRNAs. These tRNAs are completely modified with respect to queuosine in terminally differentiated somatic cells; however, hypo-modification of Q-tRNAs is closely associated with cell proliferation. Q-tRNA modification is essential for normal development, differentiation and cellular function. Queuine is a nutrient factor for eukaryotes. It is found to promote the cellular antioxidant defence system and inhibit tumorigenesis. The activities of antioxidant enzymes such as catalase, superoxide dismutase, glutathione peroxidase and glutathione reductase are found to be low in the DLAT (Dalton's lymphoma ascites transplanted) mouse liver compared with normal mouse liver. However, exogenous administration of queuine to the DLAT cancerous mouse improves the activities of antioxidant enzymes. These results suggest that queuine promotes the antioxidant defence system by increasing antioxidant enzyme activities and in turn inhibits oxidative stress and tumorigenesis.


2005 ◽  
Vol 83 (12) ◽  
pp. 1556-1565 ◽  
Author(s):  
E Arenas-Ríos ◽  
M A León-Galván ◽  
P E Mercado ◽  
A Rosado

We studied the activities of reactive oxygen species (ROS) scavenging enzymes during epididymal spermatozoon maturation and storage in Corynorhinus mexicanus (G.M. Allen, 1916), a vespertilionid bat that stores spermatozoa in the epididymides for several months after regression of the testes. Depending on the phase of the epididymal reproductive cycle, two different patterns of antioxidant enzyme activities were observed in C. mexicanus. Catalase activity is clearly present in both caput and cauda epididymides throughout the entire annual reproductive cycle, being particularly high during the post-testicular phase of epididymal function. Superoxide dismutase (SOD) activity, present during the testicular phase of epididymal transport and maturation of spermatozoa, is almost completely absent or inhibited in both epididymal segments during the post-testicular epididymal storage period. GPx activity is low during the testicular phase of epididymal spermatozoon maturation and is high in both epididymal segments during the storage phase of epididymal function. From our results, we postulate that (i) the pattern of epididymal antioxidant enzyme activities in C. mexicanus is significantly different from the pattern that is proposed to be unique for mammals; (ii) epididymal function in these species of bats can be clearly divided into two phases, a testicular-dependent phase that is related to the spermatozoon maturation function of the epididymides and a testicular-independent phase that is related to the long-term spermatozoon storage function observed in these mammals; (iii) the study of the regulation of the redox potential of the microenvironment, associated with mammalian spermatozoa as they transit through the epididymides, must be particularly focused on the anatomical region where ROS generation scavenging and spermatozoon maturation storage processes take place.


2019 ◽  
Vol 89 (3-4) ◽  
pp. 161-167 ◽  
Author(s):  
Reza Mahdavi ◽  
Tannaz khabbazi ◽  
Javid Safa

Abstract. Background: Cardiovascular disease (CVD) is the main cause of death in hemodialysis (HD) patients and oxidative stress is an important risk factor for CVD. Superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) are primary antioxidant enzymes in human cells acting against toxic reactive oxygen species (ROS) and their reduced activity may contribute to oxidative disorders in HD patients. Alpha lipoic acid (ALA) as a potent strong antioxidant may affect these enzymes. Objective: We examined the effects of ALA supplementation on antioxidant enzyme activities in HD patients. Method: In this double-blinded, randomized clinical trial, 63 HD patients (43 males and 20 females; age range: 22–79 years) were assigned into the ALA group (n: 31), receiving a daily dose of ALA (600 mg), or a control group (n: 32), receiving placebo for 8 weeks. Body mass index (BMI), antioxidant enzymes, albumin (Alb) and hemoglobin (Hb) were determined before and after intervention. Results: At baseline, the mean blood activities of SOD, GPx, and CAT in ALA group were 1032±366, 18.9±5.09 and 191±82.7 U/gHb which increased at the end of study to 1149±502, 19.1±7.19 and 208±86.6 U/gHb respectively. However, only the increase of SOD was statistically significant in comparison with placebo group (P = 0.04). The mean levels of Alb, Hb, weight and BMI were not significantly changed in study groups (P>0.05). Conclusion: ALA may be beneficial for HD patients by increasing the activity of antioxidant enzymes; however, further studies are needed to achieve precise results.


2013 ◽  
Vol 49 (2) ◽  
pp. 295-308 ◽  
Author(s):  
YANG WANG ◽  
TINGTING WEN ◽  
JIN HU ◽  
RUI HAN ◽  
YANFANG ZHU ◽  
...  

SUMMARYSalicylic acid (SA) can induce multiple stress tolerance in plants. This study investigated the relationship between SA and antioxidant enzyme activities in maize seedlings under chilling stress. Changes of endogenous SA, antioxidant enzyme activities and malondialdehyde (MDA) concentrations were assessed in two different chilling-tolerant maize inbred lines (Huang C and Mo17) under chilling stress. The results showed that both endogenous free and bound salicylic acid contents increased in roots and leaves of both lines. MDA concentrations also increased significantly in roots and leaves of both lines after chilling stress. In addition, in Huang C, chilling stress increased the activities of four antioxidant enzymes, ascorbate peroxidase (APX), catalase (CAT), glutathione reductase (GR) and peroxidase, while in Mo17, only CAT and APX increased. Furthermore, a regression analysis was conducted between SA and MDA concentrations or antioxidant enzyme activities under chilling stress. The results indicated that MDA concentrations were positively correlated with total SA contents in roots (r = 0.9776, p = 0.0224) and bound SA in leaves (r = 0.9974, p = 0.0458), respectively. Total SA contents had positive correlations with APX activities both in roots (r = 0.9993, p = 0.002) and leaves (r = 0.9630, p = 0.037) and GR in leaves (r = 0.9298, p = 0.0221). Together, these results suggested that chilling stress improved the biosynthesis of endogenous SA, and lipid peroxidation and antioxidant enzyme activities could be indicated by endogenous SA contents of maize seedlings under chilling stress. Furthermore, increased activities of antioxidant enzymes, especially in roots, may contribute to the chilling tolerance of maize seedlings.


2021 ◽  
Author(s):  
Oğuzhan Yanar ◽  
Elif F. Topkara ◽  
Fatma G. Solmaz ◽  
Sevcan Mercan

Abstract Insects are model organisms for immunological studies. The cellular and the antioxidant enzyme responses of insects are major bioindicators against environmental stresses (metal exposure, infection, etc.). In our study, the differences in the hemocyte counts and the antioxidant enzyme activities of Hyphantria cunea larvae exposed to the different amounts of zinc, copper, and nickel and Bacillus thuringiensis infection were determined. With metal exposure, the superoxide dismutase, catalase, and glutathione peroxidase activities increased, but the hemocyte counts decreased. Additionally, both the hemocyte counts and the enzyme activities increased with Bacillus thuringiensis infection. As a result of this study, we found that the superoxide dismutase, catalase, and glutathione peroxidase and the hemocyte counts varied in response to both metal exposure and bacterial infection.


2019 ◽  
Vol 16 (04) ◽  
pp. 725-729
Author(s):  
Tuğba Gür ◽  
Fatih Karahan ◽  
Halit Demir ◽  
Canan Demir

Superoxide dismutase (SOD) and catalase enzyme (CAT) activities with strong antioxidant properties were determined in cherry fruits obtained from different regions such as Aegean, Mediterranean and Marmara. The cherry fruit extract was prepared and some antioxidant activities were determined. Cherry (prunus avium) is a fruit belonging to the family of rosaceae. Its homeland is asia minor. Many varieties are grown in Turkey. There are more than a hundred culture forms grown in north america with temperate regions of europe and asia. Its body is in the form of a flat-shell tree. Cherry is a fruit rich in vitamin C. They do not contain fat and cholesterol. It contains essential minerals such as fiber, vitamin A, iron, calcium, protein as well as abundant potassium. Red cherries also contain melatonin, which helps combat harmful toxins. Due to its antioxidant properties, it has many benefits such as prevention of some types of cancer, reduction of inflammation, prevention of gout and removal of muscle pain. For this purpose, it is aimed to determine some enzyme activities which are thought to be found in cherry fruit. In this study, antioxidant enzyme activities in cherry fruit were determined by spectrophotometric method. Additonaly the findings were analyzed by using multidimensional statistical methods and the results were discussed in a multidimensional manner. It is obtained that the highest catalase enzyme activity was determined in the Aegean region (4.330 U/L), while the highest superoxide dismutase enzyme activity was found in the Mediterranean region (7.176 U/L).


2021 ◽  
Vol 19 ◽  
Author(s):  
Haixia Liu ◽  
Rui Yu ◽  
Yanan Gao ◽  
Xirong Li ◽  
Xiaoni Guan ◽  
...  

: Oxidative stress plays an important role in weight gain induced by antipsychotics in schizophrenia (SCZ). However, little is known about how antioxidant enzymes are involved in weight gain caused by risperidone monotherapy in antipsychotics-naïve first-episode (ANFE) patients with SCZ. Therefore, the main purpose of this study was to investigate the effects of risperidone on several antioxidant enzymes in patients with ANFE SCZ and the relationship between weight gain and changes in antioxidant enzyme activities. The activities of plasma superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx), as well as the levels of malondialdehyde (MDA) were measured in 225 ANFE patients and 125 healthy controls. Patients were treated with risperidone monotherapy for 12 weeks. Clinical symptoms, antioxidant enzyme activities and MDA levels were measured at baseline and during follow-up. Compared with healthy controls, the patients showed higher activities of SOD and CAT, but lower MDA levels and GPx activity. At baseline, the CAT activity was associated with bodyweight or BMI. Further, based on a 7% weight increase from baseline to follow-up, we found 75 patients in the weight gain (WG) group and 150 patients in the non-WG group. Comparison between WG group and non-WG group at baseline and during the 12-week follow-up, it was found that after treatment, the SOD activity in the WG group increased while the MDA level decreased in non-WG group. Moreover, baseline SOD and GPx activities were predictors of weight gain at 12-week follow-up. These results suggest that the antioxidant defense system may have predictive value for the weight gain of ANFE SCZ patients after risperidone treatment.


2012 ◽  
Vol 518-523 ◽  
pp. 5539-5544
Author(s):  
Dong Yuan

Under hydroponics, shoots of the copper (Cu) accumulator Elsholtzia haichowensis after 100 μM CuSO4 treatment 6 day were additionally treated with different inhibitors, then the effects of Cu and inhibitors on antioxidant enzyme activities in leave cells of E. haichowensis were investigated. Our results showed that Cu treatment significantly increased the activities of plasma membrane–bound NADPH oxidase, apoplastic peroxidase, apoplastic superoxide dismutase (SOD), symplastic SOD and symplastic ascorbate peroxidase in leaves of E. haichowensis. When additional treatment with N-N-diethyldithiocarbamate as an inhibitor of SOD, NaN3 as an inhibitor of peroxidase, diphenyleneiodonium as an inhibitor of NADPH oxidase and1,2-dihydroxybenzene-3,5-disulphonic acid as an O2•– scavenger, the activities of Cu-induced antioxidant enzymes in leave cells of E. haichowensis were significantly inhibited. The results showed that Cu-induced increase in the activities of various antioxidant enzymes in different cell compartments may represent a defense mechanism against oxidative stress.


Sign in / Sign up

Export Citation Format

Share Document