Copper and Inhibitors Induced Changes on Subcellular Antioxidant Enzyme Activities in the Leaves of Elsholtzia haichowensis

2012 ◽  
Vol 518-523 ◽  
pp. 5539-5544
Author(s):  
Dong Yuan

Under hydroponics, shoots of the copper (Cu) accumulator Elsholtzia haichowensis after 100 μM CuSO4 treatment 6 day were additionally treated with different inhibitors, then the effects of Cu and inhibitors on antioxidant enzyme activities in leave cells of E. haichowensis were investigated. Our results showed that Cu treatment significantly increased the activities of plasma membrane–bound NADPH oxidase, apoplastic peroxidase, apoplastic superoxide dismutase (SOD), symplastic SOD and symplastic ascorbate peroxidase in leaves of E. haichowensis. When additional treatment with N-N-diethyldithiocarbamate as an inhibitor of SOD, NaN3 as an inhibitor of peroxidase, diphenyleneiodonium as an inhibitor of NADPH oxidase and1,2-dihydroxybenzene-3,5-disulphonic acid as an O2•– scavenger, the activities of Cu-induced antioxidant enzymes in leave cells of E. haichowensis were significantly inhibited. The results showed that Cu-induced increase in the activities of various antioxidant enzymes in different cell compartments may represent a defense mechanism against oxidative stress.

1989 ◽  
Vol 66 (2) ◽  
pp. 1003-1007 ◽  
Author(s):  
C. W. White ◽  
P. Ghezzi ◽  
S. McMahon ◽  
C. A. Dinarello ◽  
J. E. Repine

Pretreatment with the combination of tumor necrosis factor/cachectin (TNF/C) and interleukin 1 (IL-1) increased glucose-6-phosphate dehydrogenase (G6PDH), glutathione reductase (GR), glutathione peroxidase (GPX), catalase (CAT), and superoxide dismutase (SOD) activities in lungs of rats continuously exposed to hyperoxia for 72 h, a time when all untreated rats had already died. Pretreatment with TNF/C and IL-1 also increased, albeit slightly, lung G6PDH and GR activities of rats exposed to hyperoxia for 4 or 16 h. By comparison, no differences occurred in lung antioxidant enzyme activities of TNF/C and IL-1- or saline-pretreated rats exposed to hyperoxia for 36 or 52 h; the latter is a time just before untreated rats began to succumb during exposure to hyperoxia. The results raise the possibility that TNF/C and IL-1 treatment can increase lung antioxidant enzyme activities and that increased lung antioxidant enzymes may contribute to the increased survival of TNF/C and IL-1-pretreated rats in hyperoxia for greater than 72 h.


2008 ◽  
Vol 28 (2) ◽  
pp. 73-81 ◽  
Author(s):  
Chandramani Pathak ◽  
Yogesh K. Jaiswal ◽  
Manjula Vinayak

Constant generation of ROS (reactive oxygen species) during normal cellular metabolism of an organism is generally balanced by a similar rate of consumption by antioxidants. Imbalance between ROS production and antioxidant defence results in an increased level of ROS, causing oxidative stress, which leads to promotion of malignancy. Queuine is a hyper-modified base analogue of guanine, found at the first anticodon position of the Q-family of tRNAs. These tRNAs are completely modified with respect to queuosine in terminally differentiated somatic cells; however, hypo-modification of Q-tRNAs is closely associated with cell proliferation. Q-tRNA modification is essential for normal development, differentiation and cellular function. Queuine is a nutrient factor for eukaryotes. It is found to promote the cellular antioxidant defence system and inhibit tumorigenesis. The activities of antioxidant enzymes such as catalase, superoxide dismutase, glutathione peroxidase and glutathione reductase are found to be low in the DLAT (Dalton's lymphoma ascites transplanted) mouse liver compared with normal mouse liver. However, exogenous administration of queuine to the DLAT cancerous mouse improves the activities of antioxidant enzymes. These results suggest that queuine promotes the antioxidant defence system by increasing antioxidant enzyme activities and in turn inhibits oxidative stress and tumorigenesis.


2019 ◽  
Vol 89 (3-4) ◽  
pp. 161-167 ◽  
Author(s):  
Reza Mahdavi ◽  
Tannaz khabbazi ◽  
Javid Safa

Abstract. Background: Cardiovascular disease (CVD) is the main cause of death in hemodialysis (HD) patients and oxidative stress is an important risk factor for CVD. Superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) are primary antioxidant enzymes in human cells acting against toxic reactive oxygen species (ROS) and their reduced activity may contribute to oxidative disorders in HD patients. Alpha lipoic acid (ALA) as a potent strong antioxidant may affect these enzymes. Objective: We examined the effects of ALA supplementation on antioxidant enzyme activities in HD patients. Method: In this double-blinded, randomized clinical trial, 63 HD patients (43 males and 20 females; age range: 22–79 years) were assigned into the ALA group (n: 31), receiving a daily dose of ALA (600 mg), or a control group (n: 32), receiving placebo for 8 weeks. Body mass index (BMI), antioxidant enzymes, albumin (Alb) and hemoglobin (Hb) were determined before and after intervention. Results: At baseline, the mean blood activities of SOD, GPx, and CAT in ALA group were 1032±366, 18.9±5.09 and 191±82.7 U/gHb which increased at the end of study to 1149±502, 19.1±7.19 and 208±86.6 U/gHb respectively. However, only the increase of SOD was statistically significant in comparison with placebo group (P = 0.04). The mean levels of Alb, Hb, weight and BMI were not significantly changed in study groups (P>0.05). Conclusion: ALA may be beneficial for HD patients by increasing the activity of antioxidant enzymes; however, further studies are needed to achieve precise results.


2013 ◽  
Vol 49 (2) ◽  
pp. 295-308 ◽  
Author(s):  
YANG WANG ◽  
TINGTING WEN ◽  
JIN HU ◽  
RUI HAN ◽  
YANFANG ZHU ◽  
...  

SUMMARYSalicylic acid (SA) can induce multiple stress tolerance in plants. This study investigated the relationship between SA and antioxidant enzyme activities in maize seedlings under chilling stress. Changes of endogenous SA, antioxidant enzyme activities and malondialdehyde (MDA) concentrations were assessed in two different chilling-tolerant maize inbred lines (Huang C and Mo17) under chilling stress. The results showed that both endogenous free and bound salicylic acid contents increased in roots and leaves of both lines. MDA concentrations also increased significantly in roots and leaves of both lines after chilling stress. In addition, in Huang C, chilling stress increased the activities of four antioxidant enzymes, ascorbate peroxidase (APX), catalase (CAT), glutathione reductase (GR) and peroxidase, while in Mo17, only CAT and APX increased. Furthermore, a regression analysis was conducted between SA and MDA concentrations or antioxidant enzyme activities under chilling stress. The results indicated that MDA concentrations were positively correlated with total SA contents in roots (r = 0.9776, p = 0.0224) and bound SA in leaves (r = 0.9974, p = 0.0458), respectively. Total SA contents had positive correlations with APX activities both in roots (r = 0.9993, p = 0.002) and leaves (r = 0.9630, p = 0.037) and GR in leaves (r = 0.9298, p = 0.0221). Together, these results suggested that chilling stress improved the biosynthesis of endogenous SA, and lipid peroxidation and antioxidant enzyme activities could be indicated by endogenous SA contents of maize seedlings under chilling stress. Furthermore, increased activities of antioxidant enzymes, especially in roots, may contribute to the chilling tolerance of maize seedlings.


2021 ◽  
Vol 19 ◽  
Author(s):  
Haixia Liu ◽  
Rui Yu ◽  
Yanan Gao ◽  
Xirong Li ◽  
Xiaoni Guan ◽  
...  

: Oxidative stress plays an important role in weight gain induced by antipsychotics in schizophrenia (SCZ). However, little is known about how antioxidant enzymes are involved in weight gain caused by risperidone monotherapy in antipsychotics-naïve first-episode (ANFE) patients with SCZ. Therefore, the main purpose of this study was to investigate the effects of risperidone on several antioxidant enzymes in patients with ANFE SCZ and the relationship between weight gain and changes in antioxidant enzyme activities. The activities of plasma superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx), as well as the levels of malondialdehyde (MDA) were measured in 225 ANFE patients and 125 healthy controls. Patients were treated with risperidone monotherapy for 12 weeks. Clinical symptoms, antioxidant enzyme activities and MDA levels were measured at baseline and during follow-up. Compared with healthy controls, the patients showed higher activities of SOD and CAT, but lower MDA levels and GPx activity. At baseline, the CAT activity was associated with bodyweight or BMI. Further, based on a 7% weight increase from baseline to follow-up, we found 75 patients in the weight gain (WG) group and 150 patients in the non-WG group. Comparison between WG group and non-WG group at baseline and during the 12-week follow-up, it was found that after treatment, the SOD activity in the WG group increased while the MDA level decreased in non-WG group. Moreover, baseline SOD and GPx activities were predictors of weight gain at 12-week follow-up. These results suggest that the antioxidant defense system may have predictive value for the weight gain of ANFE SCZ patients after risperidone treatment.


Fishes ◽  
2021 ◽  
Vol 6 (2) ◽  
pp. 15
Author(s):  
Cristóbal Espinosa-Ruíz ◽  
María Ángeles Esteban

This study investigated the antioxidant enzyme activities in the skin mucus of gilthead seabream (Sparus aurata L.) at 3 and 7 days post-wounding (dpw). The expression levels of the genes that encode stress proteins (grp170, grp94, grp75, sod and hsp70) and skin regeneration-related proteins (tf, igf1, tgfb1, der1, apo1 and erdj3) in the skin also were determined. Mucus and skin samples were obtained from the left and right flanks of non-wounded and wounded fish. In both flanks of the wounded fish, catalase and glutathione reductase activities in the skin mucus increased (p < 0.05) at 3 and 7 dpw (100 ± 31% and 111 ± 25%, respectively), whereas superoxide dismutase activity increased (p < 0.05) only at 7 dpw (135 ± 15%). The expression levels of stress proteins in the skin of the wounded flank of the wounded fish mainly increased at 7 dpw (grp170 increased to 288 ± 85%, grp94 to 502 ± 143%, grp75 to 274 ± 69%, sod to 569 ± 99%, and hsp70 increased to 537 ± 14%) (p < 0.05). However, the expression levels of the tissue regeneration-related genes varied depending on the flank investigated, on the experimental time, and on the gene studied. To the best of our knowledge, this is the first work to determine the effect of a wound in different skin parts of the same fish.


2021 ◽  
Vol 9 (3) ◽  
pp. 595
Author(s):  
Zhaoyan Lin ◽  
Seockmo Ku ◽  
Taehwan Lim ◽  
Sun Young Park ◽  
Myeong Soo Park ◽  
...  

Bifidobacterium bifidum BGN4-SK (BGN4-SK), a recombinant strain which was constructed from B. bifidum BGN4 (BGN4) to produce superoxide dismutase (SOD) and catalase, was analyzed to determine its antioxidant and anti-inflammatory properties in vitro. Culture conditions were determined to maximize the SOD and catalase activities of BGN4-SK. The viability, intracellular radical oxygen species (ROS) levels, intracellular antioxidant enzyme activities, and pro-inflammatory cytokine levels were determined to evaluate the antioxidant and anti-inflammatory activities of BGN4-SK in human intestinal epithelial cells (HT-29) and murine macrophage cells (RAW 264.7). Antioxidant enzymes (SOD and catalase) were produced at the highest levels when BGN4-SK was cultured for 24 h in a medium containing 500 μM MnSO4 and 30 μM hematin, with glucose as the carbon source. The viability and intracellular antioxidant enzyme activities of H2O2-stimulated HT-29 treated with BGN4-SK were significantly higher (p < 0.05) than those of cells treated with BGN4. The intracellular ROS levels of H2O2-stimulated HT-29 cells treated with BGN4-SK were significantly lower (p < 0.05) than those of cells treated with BGN4. BGN4-SK more significantly suppressed the production of interleukin (IL)-6 (p < 0.05), tumor necrosis factor-α (p < 0.01), and IL-8 (p < 0.05) in lipopolysaccharide (LPS)-stimulated HT-29 and LPS-stimulated RAW 264.7 cells compared to BGN4. These results suggest that BGN4-SK may have enhanced antioxidant activities against oxidative stress in H2O2-stimulated HT-29 cells and enhanced anti-inflammatory activities in LPS-stimulated HT-29 and RAW 264.7 cells.


2015 ◽  
Vol 74 (1) ◽  
pp. 123-142 ◽  
Author(s):  
Koushik Chakraborty ◽  
Amrit L. Singh ◽  
Kuldeep A. Kalariya ◽  
Nisha Goswami ◽  
Pratap V. Zala

AbstractFrom a field experiment, the changes in oxidative stress and antioxidant enzyme activities were studied in six Spanish peanut cultivars subjected to 25−30 days of water deficit stress at two different stages: pegging and pod development stages. Imposition of water deficit stress significantly reduced relative water content, membrane stability and total carotenoid content in all the cultivars, whereas total chlorophyll content increased at pegging stage but decreased at pod developmental stage. Chlorophyll a/b ratio increased under water deficit stress in most of the cultivars suggesting a greater damage to chlorophyll b rather than an increase in chlorophyll a content. Oxidative stress measured in terms of H2O2, superoxide radical content and lipid peroxidation increased under water deficit stress, especially in susceptible cultivars such as DRG 1, AK 159 and ICGV 86031. Relationship among different physiological parameters showed that the level of oxidative stress, in terms of production of reactive oxygen species, was negatively correlated with activities of different antioxidant enzymes such as superoxide dismutase, catalase, peroxidase, ascorbate peroxidase and glutathione reductase. In conclusion, the study shows that water deficit stress at pod development stage proved to be more detrimental than at pegging stage. The higher activities of antioxidant enzymes in the tolerant cultivars like ICGS 44 and TAG 24 were responsible for protection of oxidative damage and thus provide better tolerance to water deficit stress.


Sign in / Sign up

Export Citation Format

Share Document