Assessment of the Availability and Penetration of Solar PV, Wind and Biogas in Ghana

Author(s):  
Amevi Acakpovi ◽  
Joana Mendy Okechukwu ◽  
Patrick Adjei ◽  
Eric Asamoah

Access to energy is pivotal to the socio-economic growth of many developing countries, including Ghana. Energy generation from fossil fuels is not sustainable and leads to global warming, which is detrimental to the environment. This study seeks to establish how renewable energies are embedded and utilised in the Ghanaian energy system and the factors that can expedite the speedy penetration of renewable technologies into the country, particularly solar PV, wind, and biogas. The study adopted a mixed research approach which includes quantitative and qualitative studies. The findings revealed that solar energy is the most available resource in the country compared to other renewables. It was also indicative that integrating solar PV, wind and biogas in the national electricity grid will improve the percentage of energy generation mix, which will help sustain constant power supply, reduce the cost of energy charges, and consequently improve the country’s economy. The results also showed the possible factors that affect future penetration of these technologies, including unavailability of consumer financing opportunities, inadequate training facilities, lack of adequate regulations/policies, lack of information on the cost and benefits of renewable energies. The six findings of the paper established the availability of renewables in Ghana and the prospect of their related technology. While solar PV is on the ascendency, biogas is progressing gradually and wind is moving at a snail’s pace. This study significantly established the benefits of incorporating solar PV, wind and biogas in the Ghanaian energy mix to improve the electricity supply and further outlined the impeding factors that need to be improved upon through policy.

2018 ◽  
Vol 8 (5) ◽  
pp. 3421-3426 ◽  
Author(s):  
F. Chermat ◽  
M. Khemliche ◽  
A. E. Badoud ◽  
S. Latreche

This work aims to consider the combination of different technologies regarding energy production and management with four possible configurations. We present an energy management algorithm to detect the best design and the best configuration from the combination of different sources. This combination allows us to produce the necessary electrical energy for supplying habitation without interruption. A comparative study is conducted among the different combinations on the basis of the cost of energy, diesel consumption, diesel price, capital cost, replacement cost, operation, and maintenance cost and greenhouse gas emission. Sensitivity analysis is also performed.


2019 ◽  
Author(s):  
Wandifa Saidyleigh ◽  
A. I. Olcer ◽  
R Baumler

The increase in world seaborne trade over the past decade due to global economic and population expansion has resulted in a corresponding increase of world shipping fleet with even greater size and power requirements. The bulk of these ships use cheap and widely available fossil fuels, mainly oil for operation but which has deleterious effects on the environment. In order to address environmental concerns in the shipping sector, the International Maritime Organization (IMO), responding to the global call to reduce greenhouse gases emissions from international shipping adopted technical and operational measures. These are to ensure efficient energy management on ships and have led to the application of many innovative technologies including the use of renewable energies and alternative fuels on ships to minimize fossil fuel consumption and reduce emissions. However, in order to achieve a substantial emissions reduction in international shipping, the potential applicability of a technology which utilizes a universal renewable energy resource on the largest ship type in international shipping fleet should be investigated. This research focuses on investigating the potential of Solar Photovoltaic technology on dry bulk carriers using a developed methodology and Levelised cost of energy concept as the basis for comparison. The results of this research can be used to guide decision makers about the potentials of Solar Photovoltaic technology on dry bulk carriers in general whilst its developed methodology may be useful in the specific context for determining which ships and under what circumstances solar PV is an option.


2019 ◽  
Vol 66 (2) ◽  
pp. 99-120
Author(s):  
Wilmer Emilio García Moreno ◽  
Andressa Ullmann Duarte ◽  
Litiéle dos Santos ◽  
Rogério Vescia Lourega

AbstractThe photovoltaic technologies have been developed year by year in different countries; however, there are some countries where this kind of energy is being born, such as the Brazilian case. In this paper, some important parameters are analysed and applied to different solar cell materials, identifying that if the fossil fuels were substituted by solar cells, it would reduce the CO2 emissions by 93.2%. In addition, it is shown that the efficiency of solar cells is not as farther as it could be thought from coal thermoelectrical plants in Brazil and the cost of energy using solar cells could be as good as these thermoelectrical plants. Finally, the potentiality of Brazilian territory to implant this technology is presented, identifying that with the use of 0.2% of the territory, the energy demand could be supplied.


Author(s):  
Saleh Al Saadi ◽  
Moncef Krarti

This paper summarizes the findings from a feasibility study of using renewable energy sources in combination with conventional power systems to meet the electrical requirements for an isolated island of Masirah in Oman. The study has been conducted to determine the best hybrid system to generate electrical energy needed for a small community of 500 residential buildings. A series of a simulation analyses have been carried out to evaluate and optimize different distribution technologies including photovolatics, wind and diesel for electrical generation in combination with storage batteries. It was found that the cost of energy could be reduced by as much as 48% compared to the cost for the baseline generation system currently used in the Masirah Island (i.e. diesel-driven generators). In particular, it was found that wind turbines in combination with storage batteries have a great impact in reducing the cost of generating electrical energy for the residential community. Moreover, solar PV panels were found unattractive under the current diesel price rates but could potentially become viable if the diesel prices increase. The paper outlines an optimal design for generating electricity for the community at lowest cost while minimizing carbon emissions.


2018 ◽  
Vol 171 ◽  
pp. 01004 ◽  
Author(s):  
Hussein Ibrahim ◽  
Mazen Ghandour ◽  
Georges El-Jamal

The renewables energies are being used to reduce the environmental pollution, combat the climate change and burning of fossil fuels. For remote or decentralized areas, where grid connection is very complex, renewable energy generation system can be a reliable and optimized source of energy. Moreover, wind-diesel-solar hybrid system technology promises lots of opportunities in remote areas which are far from the main grid and are supplied by diesel gensets. This paper is based on the analysis of a hybrid energy system for optimization. The analysis of the hybrid system is realized in the HOMER software package. The HOMER software was utilized as the assessment tool with modeling performed with hourly data of wind speed, solar radiation and load. In this study, the remote village of Tuktoyaktuk situated in Northwest Territories of Canada has been taken for the discussion of the optimization analysis of a hybrid energy generation system.


Author(s):  
M. A. El-Bayoumi ◽  
Marwa M. Ibrahim

The energy from renewable sources had always been perceived as free or at least lower-cost energy, with its sourcing from natural sources such as solar radiation and wind energy. In actual the cost breakdown of renewable energy would exceed that of traditional energy sources in almost all cases. This study attempts to produce a cost model for renewable energy systems. The model takes into account different requirements and site variations into account. In this paper, elements of the cost model Renewable Energy System (RES) especially, photo-voltaic solar systems, have been investigated. Cost items are presented alongside a to-do checklist for the new Photo-Voltaic (PV) solar energy system. The goal of this study is to construct a model that would cover the cost sources as well as bring to attention the unexpected sources of cost variations that include all possible cost items of a new solar renewable energy system. The feasibility of the new system is expressed in terms of Total Cost (T.C) and Cost of Energy (COE). The model can evaluate the feasibility of off-grid as well as on-grid systems. The model investigated properly as well as an empirical analysis and verified through results comparison with reviewed case studies. The results revealed that the cost of off-grid systems is higher than the cost of on-grid systems due to the cost of batteries as well as the cost of standby generators. So, it would be more feasible to use an off-grid system only in remote or isolated areas. Risk Cost lists, ranking and success factors of new renewable projects are exhibited.


Energies ◽  
2019 ◽  
Vol 12 (6) ◽  
pp. 1110 ◽  
Author(s):  
Yunesky Masip ◽  
Anibal Gutierrez ◽  
Joel Morales ◽  
Antonio Campo ◽  
Meyli Valín

Providing energy to areas isolated from the electricity grid through the use of a smart integrated renewable energy system (SIRES) is proposed in this study for Valparaiso, Chile. The study analyzes the process of identifying the appropriate size of a SIRES considering technical and economic factors. An optimization model proposed in the literature was modified, and a subsequent spatial–temporal analysis of the different variables was conducted. The model comprises locally available renewable energy resources, such as biomass, biogas, wind power, solar photovoltaic, and thermal power. Furthermore, it was used to determine the energy potential of each of the isolated areas, identifying those areas in which the SIRES could be implemented as a sustainable solution. The design simulates the cost of the initial investment and energy generation in the chosen areas. The study also includes the selection of different system components and the use of the general model to determine the optimal combination of energy subsystems for isolated areas with the aim of minimizing the cost of energy generations. Finally, an economic evaluation showed that the use of a SIRES based mainly on solar energy supported by biomass, biogas, and mini-wind power costs approximately three times less than extending the electricity grid network.


2020 ◽  
pp. 014459872097067
Author(s):  
Krishnam Nair ◽  
Ajal Kumar

Fiji is located in the South Western part of the Pacific between latitude 18° S and longitude 179° E. In 2018, Fiji has spent approximately FJD 800 million in importing fossil fuel to meet the rising energy demand in the country. In the previous year’s several solar PV and wind resource assessments has been done and results obtained indicated that there is a potential for grid connected electricity generation using recommended resources. This study was carried out in the Nasawana Village (16°55.3 S and 178°47.4 E) to determine the options to use electricity derived from the wind. Wind analysis was carried out using Wind Atlas Analysis and Application Program (WAsP) that predicted the wind speed of 6.96 ms−1 and a power density of 256 Wm−2 at 55 m a.g.l. The annual energy production predicted for a single wind turbine (Vergnet 275 kW) is approximately 631.6 MWh with a capacity factor of 26%. The cost of energy per kWh is estimated as FJD 0.10 with a payback period of 7 years.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Majid K. Abbas ◽  
Qusay Hassan ◽  
Marek Jaszczur ◽  
Zuhair S. Al-Sagar ◽  
Ali N. Hussain ◽  
...  

Abstract The paper presents a technical and economic analysis for two energy systems (conventional and renewable) with grid connection. The investigation was carried out using an experimental measurement for the desired load and weather data (solar irradiance and ambient temperature), were 5.1 kWh the daily energy consumption as measured and 4.6 kWh/m2/day the annual average of the solar irradiance. The simulation process was done by using MATLAB and HOMER software at a 1 min time step resolution. The economic optimization objective presented for two energy system scenarios (i) photovoltaic/grid and (ii) diesel/grid, takes into account the economic aspects and component prices based on the Iraqi market and regulations. The diesel generator, very popular in rural areas, is designed to work during the same period as the photovoltaic system (only during day hours). The yearly operating hours were recorded at 4380 h/year, and energy generation was approx. 2349 kWh/year while fuel consumption was 1826 L/year. The results showed that the photovoltaic system in scenario (i) can generate about 7895 kWh, and for the diesel generator in scenario (ii), it can generate approximately 2346 kWh. Furthermore, for scenario (i) the levelized net present cost is $1079 and the cost of energy is about $0.035/kWh, while for scenario (ii) the levelized net present cost is $12,287 and the cost of energy is $0.598/kWh. The use of solar energy is highly recommended compared to diesel generators due to the lowest cost and delivery of energy to the grid. Furthermore, it can capture carbon dioxide by about 5295 kg/year.


Sign in / Sign up

Export Citation Format

Share Document