scholarly journals COMPUTATIONAL IDENTIFICATION OF PROMOTER REGIONS IN PROKARYOTES AND EUKARYOTES

Author(s):  
Sudheer Menon ◽  
Shanmughavel Piramanayakam ◽  
Gopal Agarwal

Promoters are modular DNA structures that contain complex regulatory elements required for the initiation of gene transcription. Therefore, the use of machine learning methods to identify promoters is very important for improving genome annotation and understanding transcriptional regulation. In recent years, many methods for predicting eukaryotic and prokaryotic promoters have been proposed. However, the performance of these methods is still far from satisfactory. In this article, we have developed a hybrid method (called IPMD) that combines a position correlation score function and diversity increment with modified Mahalanobis Discriminant to predict eukaryotic and prokaryotic promoters. The precise calculation and identification of promoters remains a challenge because these key DNA regulatory regions have variable structures composed of functional motifs that can provide gene-specific transcription initiation. The promoter is a regulatory DNA region, which is very important for gene transcription regulation. It is located near the transcription start site (TSS) upstream of the corresponding gene. In the post-genomics era, the availability of data makes it possible to build computational models to detect promoters robustly, because these models are expected to be helpful to academia and drug discovery. Until recently, the developed model only focused on distinguishing sequences into promoters and non-promoters. However, by considering the classification of weak and strong promoters, promoter predictors can be further improved. INDEX TERMS—: deep learning, DNA sequence analysis, Promoter prediction, Promoters, Promoter elements

2021 ◽  
Author(s):  
Conghui Li ◽  
Honghong Wang ◽  
Zhinang Yin ◽  
Pingping Fang ◽  
Ruijing Xiao ◽  
...  

G-quadruplexes (G4s) are noncanonical DNA secondary structures formed through the self-association of guanines, and G4s are distributed widely across the genome. G4 participates in multiple biological processes including gene transcription, and G4-targeted ligands serve as potential therapeutic agents for DNA-targeted therapies. However, genome-wide studies of the exact roles of G4s in transcriptional regulation are still lacking. Here, we establish a sensitive G4-CUT&Tag method for genome-wide profiling of native G4s with high resolution and specificity. We find that native G4 signals are cell type–specific and are associated with transcriptional regulatory elements carrying active epigenetic modifications. Drug-induced promoter-proximal RNA polymerase II pausing promotes nearby G4 formation. In contrast, G4 stabilization by G4-targeted ligands globally reduces RNA polymerase II occupancy at gene promoters as well as nascent RNA synthesis. Moreover, ligand-induced G4 stabilization modulates chromatin states and impedes transcription initiation via inhibition of general transcription factors loading to promoters. Together, our study reveals a reciprocal genome-wide regulation between native G4 dynamics and gene transcription, which will deepen our understanding of G4 biology toward therapeutically targeting G4s in human diseases.


2021 ◽  
Author(s):  
Michael Tun Yin Lam ◽  
Sascha H Duttke ◽  
Mazen Faris Odish ◽  
Hiep D Le ◽  
Emily A Hansen ◽  
...  

The contribution of transcription factors (TFs) and gene regulatory programs in the immune response to COVID-19 and their relationship to disease outcome is not fully understood. Analysis of genome-wide changes in transcription at both promoter-proximal and distal cis-regulatory DNA elements, collectively termed the 'active cistrome,' offers an unbiased assessment of TF activity identifying key pathways regulated in homeostasis or disease. Here, we profiled the active cistrome from peripheral leukocytes of critically ill COVID-19 patients to identify major regulatory programs and their dynamics during SARS-CoV-2 associated acute respiratory distress syndrome (ARDS). We identified TF motifs that track the severity of COVID-19 lung injury, disease resolution, and outcome. We used unbiased clustering to reveal distinct cistrome subsets delineating the regulation of pathways, cell types, and the combinatorial activity of TFs. We found critical roles for regulatory networks driven by stimulus and lineage determining TFs, showing that STAT and E2F/MYB regulatory programs targeting myeloid cells are activated in patients with poor disease outcomes and associated with single nucleotide genetic variants implicated in COVID-19 susceptibility. Integration with single-cell RNA-seq found that STAT and E2F/MYB activation converged in specific neutrophils subset found in patients with severe disease. Collectively we demonstrate that cistrome analysis facilitates insight into disease mechanisms and provides an unbiased approach to evaluate global changes in transcription factor activity and stratify patient disease severity.


2017 ◽  
Author(s):  
Mahmoud M. Ibrahim ◽  
Aslihan Karabacak ◽  
Alexander Glahs ◽  
Ena Kolundzic ◽  
Antje Hirsekorn ◽  
...  

AbstractDivergent transcription from promoters and enhancers is pervasive in many species, but it remains unclear if it is a general and passive feature of all eukaryotic cis regulatory elements. To address this, we define promoters and enhancers in C. elegans, D. melanogaster and H. sapiens using ATAC-Seq and investigate the determinants of their transcription initiation directionalities by analyzing genome-wide nascent, cap-selected, polymerase run-on assays. All three species initiate divergent transcription from separate core promoter sequences. Sequence asymmetry downstream of forward and reverse initiation sites, known to be important for termination and stability in H. sapiens, is unique in each species. Chromatin states of divergent promoters are not entirely conserved, but in all three species, the levels of histone modifications on the +1 nucleosome are independent from those on the -1 nucleosome, arguing for independent initiation events. This is supported by an integrative model of H3K4me3 levels and core promoter sequence that is highly predictive of promoter directionality and of two types of promoters: those with balanced initiation directionality and those with skewed directionality. Lastly, D. melanogaster enhancers display variation in chromatin architecture depending on enhancer location, and D. melanogaster promoter regions with dual enhancer/promoter potential are enriched for divergent transcription. Our results point to a high degree of variation in regulatory element transcription initiation directionality within and between metazoans, and to non-passive regulatory mechanisms of transcription initiation directionality in those species.


Plants ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1456
Author(s):  
Xin Jin ◽  
Can Baysal ◽  
Margit Drapal ◽  
Yanmin Sheng ◽  
Xin Huang ◽  
...  

Light is an essential regulator of many developmental processes in higher plants. We investigated the effect of 4-hydroxy-3-methylbut-2-enyl diphosphate reductase 1/2 genes (OsHDR1/2) and isopentenyl diphosphate isomerase 1/2 genes (OsIPPI1/2) on the biosynthesis of chlorophylls, carotenoids, and phytosterols in 14-day-old etiolated rice (Oyza sativa L.) leaves during de-etiolation. However, little is known about the effect of isoprenoid biosynthesis genes on the corresponding metabolites during the de-etiolation of etiolated rice leaves. The results showed that the levels of α-tocopherol were significantly increased in de-etiolated rice leaves. Similar to 1-deoxy-D-xylulose-5-phosphate synthase 3 gene (OsDXS3), both OsDXS1 and OsDXS2 genes encode functional 1-deoxy-D-xylulose-5-phosphate synthase (DXS) activities. Their expression patterns and the synthesis of chlorophyll, carotenoid, and tocopherol metabolites suggested that OsDXS1 is responsible for the biosynthesis of plastidial isoprenoids in de-etiolated rice leaves. The expression analysis of isoprenoid biosynthesis genes revealed that the coordinated expression of the MEP (2-C-methyl-D-erythritol 4-phosphate) pathway, chlorophyll, carotenoid, and tocopherol pathway genes mirrored the changes in the levels of the corresponding metabolites during de-etiolation. The underpinning mechanistic basis of coordinated light-upregulated gene expression was elucidated during the de-etiolation process, specifically the role of light-responsive cis-regulatory motifs in the promoter region of these genes. In silico promoter analysis showed that the light-responsive cis-regulatory elements presented in all the promoter regions of each light-upregulated gene, providing an important link between observed phenotype during de-etiolation and the molecular machinery controlling expression of these genes.


1993 ◽  
Vol 296 (3) ◽  
pp. 663-670 ◽  
Author(s):  
M F Wilkemeyer ◽  
E R Andrews ◽  
F D Ledley

Methylmalonyl-CoA mutase (MCM) is a nuclear-encoded mitochondrial matrix enzyme. We have reported characterization of murine MCM and cloning of a murine MCM cDNA and now describe the murine Mut locus, its promoter and evidence for tissue-specific variation in MCM mRNA, enzyme and holo-enzyme levels. The Mut locus spans 30 kb and contains 13 exons constituting a unique transcription unit. A B1 repeat element was found in the 3′ untranslated region (exon 13). The transcription initiation site was identified and upstream sequences were shown to direct expression of a reporter gene in cultured cells. The promoter contains sequence motifs characteristic of: (1) TATA-less housekeeping promoters; (2) enhancer elements purportedly involved in co-ordinating expression of nuclear-encoded mitochondrial proteins; and (3) regulatory elements including CCAAT boxes, cyclic AMP-response elements and potential AP-2-binding sites. Northern blots demonstrate a greater than 10-fold variation in steady-state mRNA levels, which correlate with tissue levels of enzyme activity. However, the ratio of holoenzyme to total enzyme varies among different tissues, and there is no correlation between steady-state mRNA levels and holoenzyme activity. These results suggest that, although there may be regulation of MCM activity at the level of mRNA, the significance of genetic regulation is unclear owning to the presence of epigenetic regulation of holoenzyme formation.


1990 ◽  
Vol 10 (7) ◽  
pp. 3415-3420
Author(s):  
M W Van Dyke ◽  
M Sawadogo

The existence of separable functions within the human class II general transcription factor TFIID was probed for differential sensitivity to mild proteolytic treatment. Independent of whether TFIID was bound to DNA or free in solution, partial digestion with either one of a variety of nonspecific endoproteases generated a protease-resistant protein product that retained specific DNA recognition, as revealed by DNase I footprinting. However, in contrast to native TFIID, which interacts with the adenovirus major late (ML) promoter over a very broad DNA region, partially proteolyzed TFIID interacted with only a small region of the ML promoter immediately surrounding the TATA sequence. This novel footprint was very similar to that observed with the TATA factor purified from yeast cells. Partially proteolyzed human TFIID could form stable complexes that were resistant to challenge by exogenous templates. It could also nucleate the assembly of transcription complexes on the ML promoter with an efficiency comparable to that of native TFIID, yielding similar levels of transcription initiation. These results suggest a model in which the human TFIID protein is composed of at least two different regions or polypeptides: a protease-resistant "core," which by itself is sufficient for promoter recognition and basal transcriptional levels, and a protease-sensitive "tail," which interacts with downstream promoter regions and may be involved in regulatory processes.


1991 ◽  
Vol 11 (2) ◽  
pp. 641-654
Author(s):  
C Hinkley ◽  
M Perry

Xenopus oocytes, arrested in G2 before the first meiotic division, accumulate histone mRNA and protein in the absence of chromosomal DNA replication and therefore represent an attractive biological system in which to examine histone gene expression uncoupled from the cell cycle. Previous studies have shown that sequences necessary for maximal levels of transcription in oocytes are present within 200 bp at the 5' end of the transcription initiation site for genes encoding each of the five major Xenopus histone classes. We have defined by site-directed mutagenesis individual regulatory sequences and characterized DNA-binding proteins required for histone H2B gene transcription in injected oocytes. The Xenopus H2B gene has a relatively simple promoter containing several transcriptional regulatory elements, including TFIID, CBP, and ATF/CREB binding sites, required for maximal transcription. A sequence (CTTTACAT) in the H2B promoter resembling the conserved octamer motif (ATTTGCAT), the target for cell-cycle regulation of a human H2B gene, is not required for transcription in oocytes. Nonetheless, substitution of a consensus octamer motif for the variant octamer element activates H2B transcription. Oocyte factors, presumably including the ubiquitous Oct-1 factor, specifically bind to the consensus octamer motif but not to the variant sequence. Our results demonstrate that a transcriptional regulatory element involved in lymphoid-specific expression of immunoglobulin genes and in S-phase-specific activation of mammalian H2B histone genes can activate transcription in nondividing amphibian oocytes.


Sign in / Sign up

Export Citation Format

Share Document