scholarly journals A simplified formula for determination of relative pressure in the precision forging of spur gears

2021 ◽  
Vol 9 (2) ◽  
Author(s):  
Omer Eyercioglu ◽  
◽  
Necip F. Yılmaz F. Yılmaz ◽  

In this study, the relative forging pressures of spur gears were evaluated. The precision forging of spur gears was analyzed by using the upper bound method considering corner filling and bulging effect. Numerical and experimental studies were performed to investigate the effects of various parameters, such as the number of teeth, modules, facewidth, bore diameter, and friction factor on the relative forging pressure of spur gears. The results were compared with the previous studies and a simplified formula was suggested to predict the relative pressure of precision forging of spur gears. The predicted relative forging pressures obtained by the suggested formula are shown much closer to the experimental results for the complete filling of the die cavity.

2019 ◽  
Vol 6 (2) ◽  
pp. 35-40
Author(s):  
Ye. I. Kryzhanivskyi ◽  
D. O. Panevnyk

The nature of the flow distribution in the hydraulic system of the near-bit jet pump has been analyzed. The peculiarities of searching the pumping station operating point have been shown and the equation for determining hydraulic losses in the elements of the ejection system has been given. Based on experimental studies, an error in the theoretical determination of the relative pressure of a jet pump has been established when using a known and advanced model of its working process. In contrast to the known method, the proposed model provides for the determination of the hydraulic resistance of the chisel flushing system,which is located in the area of mixed flow at the cost of working, not mixed flow. Improving the mathematical model of the ejection system allows to reduce the error of theoretical determination of the relative pressure of the jet pump.


Problems when calculating reinforced concrete structures based on the concrete deformation under compression diagram, which is presented both in Russian and foreign regulatory documents on the design of concrete and reinforced concrete structures are considered. The correctness of their compliance for all classes of concrete remains very approximate, especially a significant difference occurs when using Euronorm due to the different shape and sizes of the samples. At present, there are no methodical recommendations for determining the ultimate relative deformations of concrete under axial compression and the construction of curvilinear deformation diagrams, which leads to limited experimental data and, as a result, does not make it possible to enter more detailed ultimate strain values into domestic standards. The results of experimental studies to determine the ultimate relative deformations of concrete under compression for different classes of concrete, which allowed to make analytical dependences for the evaluation of the ultimate relative deformations and description of curvilinear deformation diagrams, are presented. The article discusses various options for using the deformation model to assess the stress-strain state of the structure, it is concluded that it is necessary to use not only the finite values of the ultimate deformations, but also their intermediate values. This requires reliable diagrams "s–e” for all classes of concrete. The difficulties of measuring deformations in concrete subjected to peak load, corresponding to the prismatic strength, as well as main cracks that appeared under conditions of long-term step loading are highlighted. Variants of more accurate measurements are proposed. Development and implementation of the new standard GOST "Concretes. Methods for determination of complete diagrams" on the basis of the developed method for obtaining complete diagrams of concrete deformation under compression for the evaluation of ultimate deformability of concrete under compression are necessary.


2020 ◽  
Vol 13 (2) ◽  
pp. 105-109
Author(s):  
E. S. Dremicheva

This paper presents a method of sorption using peat for elimination of emergency spills of crude oil and petroleum products and the possibility of energy use of oil-saturated peat. The results of assessment of the sorbent capacity of peat are presented, with waste motor oil and diesel fuel chosen as petroleum products. Natural peat has been found to possess sorption properties in relation to petroleum products. The sorbent capacity of peat can be observed from the first minutes of contact with motor oil and diesel fuel, and significantly depends on their viscosity. For the evaluation of thermal properties of peat saturated with petroleum products, experimental studies have been conducted on determination of moisture and ash content of as-fired fuel. It is shown that adsorbed oil increases the moisture and ash content of peat in comparison with the initial sample. Therefore, when intended for energy use, peat saturated with petroleum products is to be subjected to additional drying. Simulation of net calorific value has been performed based on the calorific values of peat and petroleum products with different ratios of petroleum product content in peat and for a saturated peat sample. The obtained results are compared with those of experiments conducted in a calorimetric bomb and recalculated for net calorific value. A satisfactory discrepancy is obtained, which amounts to about 12%. Options have been considered providing for combustion of saturated peat as fuel (burnt per se and combined with a solid fuel) and processing it to produce liquid, gaseous and solid fuels. Peat can be used to solve environmental problems of elimination of emergency spills of crude oil and petroleum products and as an additional resource in solving the problem of finding affordable energy.


2020 ◽  
Vol 92 (6) ◽  
pp. 13-25
Author(s):  
Vl.I. KOLCHUNOV ◽  
◽  
A.I. DEMYANOV ◽  
M.M. MIHAILOV ◽  
◽  
...  

The article offers a method and program for experimental studies of reinforced concrete structures with cross-shaped spatial crack under torsion with bending, the main purpose of which is to check the design assumptions and experimental determination of the design parameters of the proposed calculation method. The conducted experimental studies provide an opportunity to test the proposed calculation apparatus and clarify the regularities for determining deflections, angles of rotation of extreme sections, and stresses in the compressed zone of concrete. For analysis, the article presents a typical experimental scheme for the formation and development of cracks in the form of a sweep, as well as characteristic graphs of the dependence of the angles of rotation of end sections.


2001 ◽  
Vol 68 (6) ◽  
pp. 937-943 ◽  
Author(s):  
K. Bearden ◽  
J. W. Dally ◽  
R. J. Sanford

Since the pioneering discussion by Irwin, a significant effort has been devoted to determining stress intensity factors (K) using experimental methods. Techniques have been developed to determine stress intensity factors from photoelastic, strain gage, caustics, and moire´ data. All of these methods apply to a relatively long single-ended-edge crack. To date, the determination of K for internal cracks that are double-ended by experimental methods has not been addressed. This paper describes a photoelastic study of tension panels with both central and eccentric internal cracks. The data recorded in the experiments was analyzed using a new series solution for the opening-mode stress intensity factor for an internal crack. The data was also analyzed using the edge-crack series solution, which is currently employed in experimental studies. Results indicated that the experimental methods usually provided results accurate to within three to five percent if the series solution for the internal crack was employed in an overdeterministic numerical analysis of the data. Comparison of experimental results using the new series for the internal crack and the series for an edge crack showed the superiority of the new series.


Author(s):  
S.V. Matsenko ◽  
◽  
V.M. Minko ◽  
A.A. Koshelev ◽  
V.Yu. Piven ◽  
...  

Violation of industrial safety rules during the operation of offshore facilities for the production, storage and transportation of the hydrocarbon raw materials leads in the most cases to pollution of the marine environment with oil and its components. The works on localization and elimination of such pollution are carried out with the help of vessels of the technical support fleet and booms. When developing oil spill response plans at such facilities, a calculated determination of the technical characteristics of vessels and booms is required that are sufficient to carry out the planned activities. The basic design principles for determining the towing capacity of the technical fleet vessels involved in the localization and elimination of oil and oil product spills by trawling methods are given in the article. The calculation is based on theoretical studies performed by the authors of the physical processes occurring during the movement of objects of a mobile trawling order in the sea area. The results obtained during the course of theoretical studies were confirmed by the experimental studies carried out by the authors personally using the real pieces of equipment in the actual development of tasks for training spill containment by trawling. As a result, the empirical dependencies were obtained and experimentally confirmed, which can be used to calculate technical characteristics of the ships as part of the mobile orders and anchor systems as part of stationary orders intended for the localization and elimination of oil pollution. These results can be used, among other things, for the calculated substantiation of the technical characteristics of the technical fleet vessels designed to ensure safety of the offshore facilities for production, storage, and transportation of the hydrocarbon raw materials.


2021 ◽  
pp. 4-12
Author(s):  

Experimental studies have revealed a significant impact of deformation of Сommon Rail injector parts on the fuel supply process. High pressures alter the structure of the fuel supply cy-cle. Theforward front of the fuel supply cycle begins with the stage of unloading the deformed parts of the injector. The rear front of the fuel supply cycle ends with the stage of deformation of the injector parts. The calculated and experimental determination of cyclic fuel supply gave similar results. The developed method of determining the duration of the injection cycle stages creates a basis for experimental verification of mathematical models. Keywords: injector, Common Rail, diesel, fuel system, electronic control, needle, fuel injection


2016 ◽  
pp. 120-125
Author(s):  
M. Ya. Habibullin ◽  
R. R. Shangareyev

The article deals with the issues related to the hydrocarbon reservoirs oil recovery enhancement. It describes the bench laboratory experimental studies. The results obtained during determination of fluid leakage through the rock samples and the amount of absorption of pressure fluctuations at various regime parameters are presented. Using the experimental data the regression analysis was performed on the basis of which the qualitative correlations between factorial and resultant features were identified. Using the regression equations the graphic relations were constructed. It was found that with increasing the oscillation frequency of the fluid the amount of fluid passing through the sample of porous medium increased, with the highest value of q reached at the frequency range of 600 ... 1000 Hz. With increase in the oscillations penetration depth the absorption of the amplitude of the pressure fluctuations corresponds to the linear decrease, and with the overburden pressure increase the linear variation of absorption is distorted.


2020 ◽  
Vol 17 (35) ◽  
pp. 599-608 ◽  
Author(s):  
Alexander A. OREKHOV ◽  
Yuri A. UTKIN ◽  
Polina F. PRONINA

One of the significant innovative technologies is the creation of large-sized structures that work for a long time in space and meet stringent restrictions on overall mass characteristics. Among these structures, in the first place, is the section of bearing truss (BT). This article presents the results of experimental studies of sectors of load-bearing trusses of mesh design for compression. Recently, composite mesh cylindrical shells are used as spacecraft housings. The mesh shell is a supporting structure to which the instruments and mechanisms of the spacecraft are attached. The truss section is made of cross-linked polymer composite material with carbon fibers. The objective of the tests is to confirm the possibility of creating a lightweight mesh construction using a carbon fiber reinforced polymer composite material. To achieve this goal, the authors were assigned the following tasks: selection of carbon filler of polymer composite materials (PCM); selection of PCM binder; determination of the degree of carbon fiber reinforcement; choice of the number and orientation paths of spiral ribs, number of ring ribs and the sizes of individual ribs. As a result of the research, the calculated indicators for ensuring the bearing capacity and stiffness under the application of axial compressive load were obtained. At the same time, with the determination of bearing capacity, the deformation characteristics of the structure were twice determined in order to confirm their repeatability, as well as linear nature of the dependence of axial and radial deformations as a result of the applied load.


Sign in / Sign up

Export Citation Format

Share Document