INVESTIGATION OF THE LEVEL OF GENE EXPRESSION OF SUBUNITS OF GABA RECEPTOR AFTER ADMINISTRATION OF KLOFLUBICIN

Author(s):  
O. V. Varlamova ◽  
A. V. Babkin ◽  
I. S. Berdinskih ◽  
A. K. Nazarov ◽  
A. S. Sadovnikova ◽  
...  

The article presents the results of determining the level of expression of genes encoding GABA receptor subunits GABRA1, GABRB2, and GABRG2 in the hippocampus of rats 24 hours after a single intramuscular administration of the antagonist of the chloro-ion channel of GABA receptor of kloflubicin in a dose of LD25, LD40, LD50, and LD75. It is revealed that kloflubicin has no influence on the relative level of GABRG2 gene expression. At the same time, the relative level of GABRA1 gene expression increases 7,5, 7,0, and 5,0 times after administration of kloflubicin in a dose of LD40, LD50, and LD75, respectively. The relative level of GABRB2 gene expression also increases 3,6 and 2,6 times after administration of kloflubicin in a dose of LD50 and LD75, respectively. It is assumed that increase in the level of gene expression of GABRA1 and GABRB2 in rats after administration of kloflubicin in doses above LD25 is a compensatory reaction of the body to the effect of physiologically active substance, and subunits encoded by these genes α1 and β2, respectively, are included in the mechanism of convulsive effect.

2020 ◽  
Author(s):  
Róbert Pálovics ◽  
Andreas Keller ◽  
Nicholas Schaum ◽  
Weilun Tan ◽  
Tobias Fehlmann ◽  
...  

Slowing or reversing biological ageing would have major implications for mitigating disease risk and maintaining vitality. While an increasing number of interventions show promise for rejuvenation, the effectiveness on disparate cell types across the body and the molecular pathways susceptible to rejuvenation remain largely unexplored. We performed single-cell RNA-sequencing on 13 organs to reveal cell type specific responses to young or aged blood in heterochronic parabiosis. Adipose mesenchymal stromal cells, hematopoietic stem cells, hepatocytes, and endothelial cells from multiple tissues appear especially responsive. On the pathway level, young blood invokes novel gene sets in addition to reversing established ageing patterns, with the global rescue of genes encoding electron transport chain subunits pinpointing a prominent role of mitochondrial function in parabiosis-mediated rejuvenation. Intriguingly, we observed an almost universal loss of gene expression with age that is largely mimicked by parabiosis: aged blood reduces global gene expression, and young blood restores it. Altogether, these data lay the groundwork for a systemic understanding of the interplay between blood-borne factors and cellular integrity.


Author(s):  
I. Ilienko ◽  
◽  
D. Bazyka ◽  
N. Golyarnyk ◽  
L. Zvarych ◽  
...  

Objective. to establish the connection of radiation-induced changes in gene expression with the realized pathology of the broncho-pulmonary and cardiovascular systems in Chornobyl clean-up workers. Materials and methods. We examined 314 male Chornobyl clean-up workers (main group; age (58.94 ± 6.82) years (M ± SD); min 33, max 79 years; radiation dose (411.82 ± 625.41) mSv (M ± SD); min 1.74, max 3600 mSv) with various nosological forms of cardiovascular and broncho-pulmonary pathology (BPP) and 50 subjects of the control group: age (50.50 ± 5.73) years (M ± SD); min 41, max 67 years. The relative level of BCL2, CDKN2A, CLSTN2, GSTM1, IFNG, IL1B, MCF2L, SERPINB9, STAT3, TERF1, TERF2, TERT, TNF, TP53, CCND1, CSF2, VEGFA genes expression was determined in peripheral blood leukocytes by real-time PCR (7900 HT Fast Real-Time PCR System (Applied Biosystems, USA)). The «gene-disease» association was determined on statistical models stratified separately for each disease and gene. Logistic regression was used to calculate the odds ratio. Results. Increased GSTM1 gene expression and no changes in angiogenesis-related VEGFA gene expression were found in the main group of patients with coronary heart disease (CHD). It was established overexpression of TP53, VEGF and IFNG genes in the group of patients with arterial hypertension (AH). At combination of these diseases an increase of expression of СSF2, TERF1, TERF2 genes was established. The detected changes demonstrate an activation of the antioxidative defense system in patients with CHD, while AH is associated with the expression of genes of angiogenesis and immune inflammation. It was shown an increase in the expression of genes associated with apoptosis and kinase activity (BCL2, CLSTN2, CDKN2), immune inflammation (CSF2, IL1B, TNF) in Chornobyl clean-up workers with BPP. Expression of TP53 and GSTM1 (gene, associated with the glutathione system) was significantly upregulated in the group of individuals with chronic bronchitis, whereas in patients with chronic obstructive pulmonary disease, no increase was detected; the expression of SERPINB9 and MCF2L genes was downregulated. Conclusions. Changes in the expression of genes, associated with the development of somatic pathology in the remote period after irradiation, in particular the genes of the immune response and inflammatory reactions CSF2, IFNG, IL1B, TNF; expression of genes that regulate cell proliferation, aging and apoptosis TP53, BCL2, MCF2L, CDKN2A, SERPINB9, TERF1, TERF2, TERT; genes that regulate cell adhesion and angiogenesis CLSTN2, VEGF. Key words: gene expression, somatic pathology, radiation, Chornobyl.


2018 ◽  
Vol 17 (2) ◽  
pp. 41-46 ◽  
Author(s):  
S. G. Zakharov ◽  
A. K. Golenkov ◽  
A. V. Misyurin ◽  
E. V. Kataeva ◽  
A. A. Rudakova ◽  
...  

Introduction.The given data of fundamental studies of apoptosis processes in B-cell lymphocytic leukemia (B-CLL) testifies about the complexity and variety of mechanisms affecting the kinetics of normal cells and tumor lymphocytes in this disease. It is important to study the severity of clinical manifestations of the disease depending on the expression of the genes that modulate apoptosis.The purposeof the study is to compare the activity of genes encoding apoptosis modulators, the cell cycle and cancer-testicular PRAME protein with clinical manifestations of the disease in primary patients with B-CLL.Materials and methods.The level of expression of the proapoptotic genes FAS, TRAIL, TNFR2, DR4/5 and DR3, as well as the HSP27, XIAP genes, blocking apoptosis was determined in 23 patients with newly diagnosed chronic B-CLL. In addition, expression of genes TP53 and P21 and cancer-testis gene PRAME are tested.Results.According to the multivariate regression analysis, the FAS gene expression in the onset of the disease had the greatest impact on the clinical characteristics of the disease. In this connection, the patients were divided into groups with normal (group) and low gene level (group II). A low level of FAS expression (Me 387 %) was associated with stage II disease (p = 0.03), a large number of lympho cytes (p = 0.001), fewer erythrocytes (p = 0.08), and a lower level of TNFR2 gene expression (p = 0.08), high level of expression of XIAP, HSP27, P21. Overall, the anti-apoptotic potential in Group II patients was higher, which was accompanied by more pronounced clinical manifestations of the disease.Conclusions.The increased anti-apoptotic potential of tumor lymphocytes in newly diagnosed B-CLL is accompanied by a larger tumor mass and greater clinical and hematological manifestation of the disease.


Hypertension ◽  
2013 ◽  
Vol 62 (suppl_1) ◽  
Author(s):  
Ko-Ting Lu ◽  
Eric T Weatherford ◽  
Pimonrat Ketsawatsomkron ◽  
Justin L Grobe ◽  
Curt D Sigmund

Expression of the renin gene is required to maintain normal morphological and physiological identity of renal juxtaglomerular (JG) cells, yet the mechanisms regulating renin gene transcription remain elusive. We re-examined data from Brunskill et. al (JASN 22:2213, 2011), investigating genome-wide gene expression in JG and other renal cell types. Based on our previous data implicating nuclear receptors (RAR, RXR, VDR, PPARG, Nr2f2 and Nr2f6) in the regulation of mouse and human renin gene expression, we focused our analysis on the expression of genes encoding the 48 nuclear hormone receptors and their co-regulation with renin. Several nuclear receptors have an expression pattern emulating that of renin, that is, they were similarly enriched in JG cells but not in other cell types. These include Esr1, Nr1h4, Ppara, VDR, Nr1i2, Ppard, Hnf4g, Nr1h3, Thrb, Hnf4a, Esrrg, Nr4a3, Nr3c2, and Ar. We tested the hypothesis that a nuclear receptor that is co-regulated with renin may participate in renin gene regulation. To accomplish this, endogenous renin expression was evaluated in renin-expressing As4.1 cells after siRNA-mediated knock down of selected nuclear receptors. Each experiment included a negative control siRNA duplex (NC) that does not target any known genes. By way of example, siRNA-mediated inhibition of estrogen receptor alpha (Esr1) by 70-80% resulted in a 2-fold decrease in renin mRNA (fold change ± SEM: siEsr1: 0.4±0.2, p<0.001 vs NC). Similar results were obtained with a different siRNA targeting Esr1. Interestingly, loss of Esr1 also caused up-regulation of vitamin D receptor (VDR, 2.8±0.7 fold, p<0.001 vs NC) and Nr2f6 (2.0±0.2 fold, p<0.05 vs NC), both of which are known to be negative regulators of renin. Similarly, both renin (0.1±0.02, p<0.001 vs untreated) and Esr1 (0.3±0.1, p<0.05 vs untreated) mRNA were reduced in the kidney from mice treated with deoxycorticosterone acetate (50mg) and receiving 0.15 M NaCl in drinking water for 21 days (DOCA-salt). These data suggest Esr1 may regulate renin expression. Studies are in progress to assess if Esr1 stimulates renin expression on its own or acts by affecting the level of other nuclear receptors; and to determine if other co-regulated nuclear receptors also regulate expression of the renin gene.


2015 ◽  
Vol 36 (5) ◽  
pp. 1767-1777 ◽  
Author(s):  
Agnieszka Dettlaff-Pokora ◽  
Tomasz Sledzinski ◽  
Julian Swierczynski

Background/Aims: The aim of this study was to explain the molecular basis for elevated concentrations of circulating triglycerides (TAGs) after partial surgical removal of adipose tissue (lipectomy) in rats. Methods: The levels of mRNA and protein: a) involved in synthesis of fatty acids and TAGs; b) participating in TAG-rich lipoproteins assembly and secretion; and c) transcription factors essential for maintaining TAG homeostasis were determined by RT-PCR and Western Blot in the livers of control and lipectomized rats. Results: Partial lipectomy was associated with increase: a) in serum and liver concentration of TAGs, and b) in the liver levels of mRNA of microsomal TAG transfer protein (MTP) and apolipoprotein B-100 (ApoB-100). These changes were tightly associated with up-regulation of Hnf1a and Hnf4a gene expression in the liver. Lipectomy was also reflected by a significant increase in the expression of genes encoding: a) fatty acid synthase (FASN), b) glycerol 3-phosphate acyltransferase 1 (GPAT1), diacylglycerol acyltransferases 1 and 2 (DGAT1 and DGAT2), c) spot 14 protein (S14) and SREBP-1 in the liver. Conclusion: Coordinated up-regulation of Mttp, Apob, Hnf1a, Hnf4a, Fasn, Gpam and Dgat (1 and 2) gene expressions may contribute to the increase in circulating and liver concentrations of TAGs after lipectomy in an experimental rat model.


The study of phytochrome signalling has yielded a wealth of data describing both the perception of light by the receptor, and the terminal steps in phytochrome-regulated gene expression by a number of transcription factors. We are now focusing on establishing the intervening steps linking phytochrome photoactivation to gene expression, and the regulation and interactions of these signalling pathways. Recent work has utilized both a pharmacological approach in phototrophic soybean suspension cultures and microinjection techniques in tomato to establish three distinct phytochrome signal-transduction pathways: (i) a calcium-dependent pathway that regulates the expression of genes encoding the chlorophyll a/b binding protein ( CAB ) and other components of photosystem II; (ii) a cGMP-dependent pathway that regulates the expression of the gene encoding chalcone synthase ( CHS ) and the production of anthocyanin pigments; and (iii) a pathway dependent upon both calcium and cGMP that regulates the expression of genes encoding components of photosystem I and is necessary for the production of mature chloroplasts. To study the components and the regulation of phytochrome signal-transduction pathways, mutants with altered photomorphogenic responses have been isolated by a number of laboratories. However, with several possible exceptions, little real progress has been made towards the isolation of mutants in positive regulatory elements of the phytochrome signal-transduction pathway. We have characterized a novel phytochrome A (phyA)-mediated far-red light (FR) response in Arabidopsis seedlings which we are currently using to screen for specific phyA signal-transduction mutants.


1999 ◽  
Vol 19 (3) ◽  
pp. 2044-2050 ◽  
Author(s):  
Seok Hee Park ◽  
Sang Seok Koh ◽  
Jae Hwan Chun ◽  
Hye Jin Hwang ◽  
Hyen Sam Kang

ABSTRACT Expression of genes encoding starch-degrading enzymes is regulated by glucose repression in the yeast Saccharomyces cerevisiae. We have identified a transcriptional repressor, Nrg1, in a genetic screen designed to reveal negative factors involved in the expression of STA1, which encodes a glucoamylase. TheNRG1 gene encodes a 25-kDa C2H2zinc finger protein which specifically binds to two regions in the upstream activation sequence of the STA1 gene, as judged by gel retardation and DNase I footprinting analyses. Disruption of theNRG1 gene causes a fivefold increase in the level of theSTA1 transcript in the presence of glucose. The expression of NRG1 itself is inhibited in the absence of glucose. DNA-bound LexA-Nrg1 represses transcription of a target gene 10.7-fold in a glucose-dependent manner, and this repression is abolished in bothssn6 and tup1 mutants. Two-hybrid and glutathione S-transferase pull-down experiments show an interaction of Nrg1 with Ssn6 both in vivo and in vitro. These findings indicate that Nrg1 acts as a DNA-binding repressor and mediates glucose repression of the STA1 gene expression by recruiting the Ssn6-Tup1 complex.


Plant Disease ◽  
2017 ◽  
Vol 101 (9) ◽  
pp. 1606-1615 ◽  
Author(s):  
Zhen-Hua Cui ◽  
Wen-Lu Bi ◽  
Xin-Yi Hao ◽  
Peng-Min Li ◽  
Ying Duan ◽  
...  

Reddish-purple coloration on the leaf blades and downward rolling of leaf margins are typical symptoms of grapevine leafroll disease (GLD) in red-fruited grapevine cultivars. These typical symptoms are attributed to the expression of genes encoding enzymes for anthocyanins synthesis, and the accumulation of flavonoids in diseased leaves. Drought has been proven to accelerate development of GLD symptoms in virus-infected leaves of grapevine. However, it is not known how drought affects GLD expression nor how anthocyanin biosynthesis in virus-infected leaves is altered. The present study used HPLC to determine the types and levels of anthocyanins, and applied reverse transcription quantitative polymerase chain reaction (RT-qPCR) to analyze the expression of genes encoding enzymes for anthocyanin synthesis. Plantlets of Grapevine leafroll-associated virus 3 (GLRaV-3)-infected Vitis vinifera ‘Cabernet Sauvignon’ were grown in vitro under PEG-induced drought stress. HPLC found no anthocyanin-related peaks in the healthy plantlets with or without PEG-induced stress, while 11 peaks were detected in the infected plantlets with or without PEG-induced drought stress, but the peaks were significantly higher in infected drought-stressed plantlets. Increased accumulation of total anthocyanin compounds was related to the development of GLD symptoms in the infected plantlets under PEG stress. The highest level of up-regulated gene expression was found in GLRaV-3-infected leaves with PEG-induced drought stress. Analyses of variance and correlation of anthocyanin accumulation with related gene expression levels found that GLRaV-3-infection was the key factor in increased anthocyanin accumulation. This accumulation involved the up-regulation of two key genes, MYBA1 and UFGT, and their expression levels were further enhanced by drought stress.


2014 ◽  
Vol 54 (9) ◽  
pp. 1436 ◽  
Author(s):  
B. P. Dalrymple ◽  
B. Guo ◽  
G. H. Zhou ◽  
W. Zhang

Intramuscular fat content (IMF%) in cattle influences the value of individual animals, especially for higher marbling markets. IMF is triacylglyceride (TAG) in lipid droplets in the intramuscular adipocytes. However, there are many different pathways from feed intake to the final common process of TAG synthesis and storage as IMF. To evaluate the relative importance of different pathways we compared changes in the expression of genes encoding proteins involved in the TAG and fatty acid (FA) synthesis pathways in the longissimus muscle of Piedmontese × Hereford (P×H) and Wagyu × Hereford (W×H) crosses. Based on these changes we have estimated the relative contributions of FA synthesised de novo in the intramuscular adipocyte and the uptake of circulating FA (both free and from TAG), from the diet or synthesised de novo in other tissues, to TAG deposition as IMF. We have analysed the impact of different developmental times and different diets on these processes. Increased de novo FA synthesis in intramuscular adipocytes appeared to contribute more than increased FA uptake from circulation to the additional TAG deposition in W×H compared with P×H cattle between 12 and 25 months (forage diet). Changing diet from forage to concentrate appeared to increase the importance of FA uptake from circulation relative to de novo FA synthesis for TAG synthesis in intramuscular adipocytes. These results are consistent with the literature based on analysis of lipid composition. Gene expression appears to provide a simple assay for identification of the source of FA for the deposition of IMF.


2009 ◽  
Vol 38 (3) ◽  
pp. 342-350 ◽  
Author(s):  
Stephen Welle ◽  
Andrew Cardillo ◽  
Michelle Zanche ◽  
Rabi Tawil

There is much interest in developing anti-myostatin agents to reverse or prevent muscle atrophy in adults, so it is important to characterize the effects of reducing myostatin activity after normal muscle development. For assessment of the effect of loss of myostatin signaling on gene expression in muscle, RNA from mice with postdevelopmental myostatin knockout was analyzed with oligonucleotide microarrays. Myostatin was undetectable in muscle within 2 wk after Cre recombinase activation in 4-month-old male mice with floxed myostatin genes. Three months after myostatin depletion, muscle mass had increased 26% (vs. 2% after induction of Cre activity in mice with normal myostatin genes), at which time the expression of several hundred genes differed in knockout and control mice at nominal P < 0.01. In contrast to previously reported effects of constitutive myostatin knockout, postdevelopmental knockout did not downregulate expression of genes encoding slow isoforms of contractile proteins or genes encoding proteins involved in energy metabolism. Several collagen genes were expressed at 20–50% lower levels in the myostatin-deficient muscles, which had ∼25% less collagen than normal muscles as reflected by hydroxyproline content. Most of the other genes affected by myostatin depletion have not been previously linked to myostatin signaling. Gene set enrichment analysis suggested that Smads are not the only transcription factors with reduced activity after myostatin depletion. These data reinforce other evidence that myostatin regulates collagen production in muscle and demonstrate that many of the previously reported effects of constitutive myostatin deficiency do not occur when myostatin is knocked out in mature muscles.


Sign in / Sign up

Export Citation Format

Share Document