scholarly journals Atmospheric circulation during heat waves in Eastern Europe

Geografie ◽  
2017 ◽  
Vol 122 (2) ◽  
pp. 121-146 ◽  
Author(s):  
Arkadiusz M. Tomczyk

This article aims to describe heat waves in Eastern Europe and to determine the synoptic situations which cause them. In this article, a hot day is defined as the one with a maximum temperature above the 95th percentile of all the values in the analysed period, and a heat wave is considered as a sequence of at least 5 such days. In the analysed period and within the investigated area, from 24 (Kaliningrad) to 55 (Kharkiv) heat waves were observed. The longest heat wave was recorded in Moscow in 2010, lasting as many as 45 days. In the analysed period, an increase in frequency and length of heat waves was observed within the analysed area. The occurrence of heat waves was connected with a high pressure system located over the eastern part of the continent, during which positive anomalies of sea level pressure and the 500 hPa geopotential height as well as positive T850 anomalies were recorded.

Geografie ◽  
2019 ◽  
Vol 124 (1) ◽  
pp. 1-17 ◽  
Author(s):  
Arkadiusz M. Tomczyk ◽  
Ewa Bednorz ◽  
Marek Półrolniczak

The objective of the paper was to characterize the occurrence of heat waves in Europe between 1976 and 2015 and to determine circulation conditions causing their occurrence. The heat waves were recognized as a sequence of at least 5 consecutive hot days. The hot day was defined as a day on which daily maximum air temperature was higher than 95th percentile of all the values in the analyzed period. The conducted research showed an increase in the number of heat waves and their duration in the analyzed period. The longest heat wave occurred in 2010, in Moscow, which lasted 45 days. The most intense changes were observed in the eastern and south-eastern regions. The occurrence of heat waves was mainly connected with positive anomalies of atmospheric pressure at sea level, geopotential height of 500 hPa, and temperature on isobaric surface 850 hPa.


2012 ◽  
Vol 140 (4) ◽  
pp. 1347-1355 ◽  
Author(s):  
Ge Chen ◽  
Chengcheng Qian ◽  
Caiyun Zhang

Sea level pressure (SLP) acts, on the one hand, as a “bridge parameter” to which geophysical properties at the air–sea interface (e.g., wind stress and sea surface height) are linked, and on the other hand, as an “index parameter” by which major atmospheric oscillations, including the well-known Southern Oscillation, are defined. Using 144 yr (1854–1997) of extended reconstructed SLP data, seasonal patterns of its variability are reinvestigated in detail. New features on fundamental structure of its annual and semiannual cycles are revealed in two aspects. First, the spatiotemporal patterns of yearly and half-yearly SLPs are basically determined by a network of “amphidromes,” which are surrounded by rotational variations. Fourteen cyclonic and anticyclonic annual SLP amphidromes (half each and often in pair) are found in the global ocean, while the numbers of the two types of semiannual amphidrome are 11 and 9, respectively. The second dominant feature in SLP variability is the pattern of oscillation or seesaw for both annual and semiannual components. At least eight oscillation zones are identified for the annual cycle, which can be categorized into a boreal winter mode and an austral winter mode. As for the semiannual cycle, the seesaw pattern is geographically divided into three regimes: the North Pacific regime, the North Atlantic regime, and the Southern Ocean regime. These findings serve as a new contribution to characterizing and understanding the seasonality of the global ocean–atmosphere system.


2017 ◽  
Vol 17 (1) ◽  
pp. 115-125 ◽  
Author(s):  
Guido Ceccherini ◽  
Simone Russo ◽  
Iban Ameztoy ◽  
Andrea Francesco Marchese ◽  
Cesar Carmona-Moreno

Abstract. The purpose of this article is to show the extreme temperature regime of heat waves across Africa over recent years (1981–2015). Heat waves have been quantified using the Heat Wave Magnitude Index daily (HWMId), which merges the duration and the intensity of extreme temperature events into a single numerical index. The HWMId enables a comparison between heat waves with different timing and location, and it has been applied to maximum and minimum temperature records. The time series used in this study have been derived from (1) observations from the Global Summary of the Day (GSOD) and (2) reanalysis data from ERA-Interim. The analysis shows an increasing number of heat waves of both maxima and minima temperatures in the last decades. Results from heat wave analysis of maximum temperature (HWMIdtx) indicate an increase in intensity and frequency of extreme events. Specifically, from 1996 onwards it is possible to observe HWMIdtx spread with the maximum presence during 2006–2015. Between 2006 and 2015 the frequency (spatial coverage) of extreme heat waves had increased to 24.5 observations per year (60.1 % of land cover), as compared to 12.3 per year (37.3 % of land area) in the period from 1981 to 2005 for GSOD stations (reanalysis).


Author(s):  
Hojjatollah Yazdanpanah ◽  
Josef Eitzinger ◽  
Marina Baldi

Purpose The purpose of this paper is to assess the spatial and temporal variations of extreme hot days (H*) and heat wave frequencies across Iran. Design/methodology/approach The authors used daily maximum temperature (Tmax) data of 27 synoptic stations in Iran. These data were standardized using the mean and the standard deviation of each day of the year. An extreme hot day was defined when the Z score of daily maximum temperature of that day was equal or more than a given threshold fixed at 1.7, while a heat wave event was considered to occur when the Z score exceeds the threshold for at least three continuous days. According to these criteria, the annual frequency of extreme hot days and the number of heat waves were determined for all stations. Findings The trend analysis of H* shows a positive trend during the past two decades in Iran, with the maximum number of H* (110 cases) observed in 2010. A significant trend of the number of heat waves per year was also detected during 1991-2013 in all the stations. Overall, results indicate that Iran has experienced heat waves in recent years more often than its long-term average. There will be more frequent and intense hot days and heat waves across Iran until 2050, due to estimated increase of mean air temperature between 0.5-1.1 and 0.8-1.6 degree centigrade for Rcp2.6 and Rcp8.8 scenarios, respectively. Originality/value The trend analysis of hot days and heat wave frequencies is a particularly original aspect of this paper. It is very important for policy- and decision-makers especially in agriculture and health sectors of Iran to make some adaptation strategies for future frequent and intense hot days over Iran.


2008 ◽  
Vol 21 (9) ◽  
pp. 1979-1997 ◽  
Author(s):  
Megan E. Linkin ◽  
Sumant Nigam

Abstract The North Pacific Oscillation (NPO) in sea level pressure and its upper-air geopotential height signature, the west Pacific (WP) teleconnection pattern, constitute a prominent mode of winter midlatitude variability, the NPO/WP. Its mature-phase expression is identified from principal component analysis of monthly sea level pressure variability as the second leading mode just behind the Pacific–North American variability pattern. NPO/WP variability, primarily on subseasonal time scales, is characterized by a large-scale meridional dipole in SLP and geopotential height over the Pacific and is linked to meridional movements of the Asian–Pacific jet and Pacific storm track modulation. The hemispheric height anomalies at upper levels resemble the climatological stationary wave pattern attributed to transient eddy forcing. The NPO/WP divergent circulation is thermal wind restoring, pointing to independent forcing of jet fluctuations. Intercomparison of sea level pressure, geopotential height, and zonal wind anomaly structure reveals that NPO/WP is a basin analog of the NAO, which is not surprising given strong links to storm track variability in both cases. The NPO/WP variability is influential: its impact on Alaskan, Pacific Northwest, Canadian, and U.S. winter surface air temperatures is substantial—more than that of PNA or ENSO. It is likewise more influential on the Pacific Northwest, western Mexico, and south-central Great Plains winter precipitation. Finally, and perhaps, most importantly, NPO/WP is strongly linked to marginal ice zone variability of the Arctic seas with an influence that surpasses that of other Pacific modes. Although NPO/WP variability and impacts have not been as extensively analyzed as its Pacific cousins (PNA, ENSO), it is shown to be more consequential for Arctic sea ice and North American winter hydroclimate.


2021 ◽  
Vol 9 ◽  
Author(s):  
Jiayan Ren ◽  
Guohe Huang ◽  
Yongping Li ◽  
Xiong Zhou ◽  
Jinliang Xu ◽  
...  

A heat wave is an important meteorological extreme event related to global warming, but little is known about the characteristics of future heat waves in Guangdong. Therefore, a stepwise-clustered simulation approach driven by multiple global climate models (i.e., GCMs) is developed for projecting future heat waves over Guangdong under two representative concentration pathways (RCPs). The temporal-spatial variations of four indicators (i.e., intensity, total intensity, frequency, and the longest duration) of projected heat waves, as well as the potential changes in daily maximum temperature (i.e., Tmax) for future (i.e., 2006–2095) and historical (i.e., 1976–2005) periods, were analyzed over Guangdong. The results indicated that Guangdong would endure a notable increasing annual trend in the projected Tmax (i.e., 0.016–0.03°C per year under RCP4.5 and 0.027–0.057°C per year under RCP8.5). Evaluations of the multiple GCMs and their ensemble suggested that the developed approach performed well, and the model ensemble was superior to any single GCM in capturing the features of heat waves. The spatial patterns and interannual trends displayed that Guangdong would undergo serious heat waves in the future. The variations of intensity, total intensity, frequency, and the longest duration of heat wave are likely to exceed 5.4°C per event, 24°C, 25 days, and 4 days in the 2080s under RCP8.5, respectively. Higher variation of those would concentrate in eastern and southwestern Guangdong. It also presented that severe heat waves with stronger intensity, higher frequency, and longer duration would have significant increasing tendencies over all Guangdong, which are expected to increase at a rate of 0.14, 0.83, and 0.21% per year under RCP8.5, respectively. Over 60% of Guangdong would suffer the moderate variation of heat waves to the end of this century under RCP8.5. The findings can provide decision makers with useful information to help mitigate the potential impacts of heat waves on pivotal regions as well as ecosystems that are sensitive to extreme temperature.


2007 ◽  
Vol 7 (4) ◽  
pp. 10467-10514 ◽  
Author(s):  
J. Struzewska ◽  
J. W. Kaminski

Abstract. The European heat wave of July 2006 was caused by advection of very hot and dry air from North Africa. Air masses were transported on the western edge of the high pressure system, centred over Eastern Europe, resulting in exceptionally high air temperatures over large areas of the continent. In the first two weeks of July 2006 a severe heat wave affected Central and North-Eastern Europe. We present a synoptic analysis of the July 2006 European heat wave, resulting formation and transport of photooxidants over Europe as simulated by the on-line tropospheric chemistry model GEM-AQ. The model was executed on a global variable grid with ~15 km resolution over the entire European continent. Modelling results have been compared with surface observations and vertical soundings of meteorological and air quality parameters. We find that the calculated error measures, as well as analysis of time series and trends for selected quantities, indicate good model performance over the simulation period. The spatial pattern of two exposure indicators – SOMO35 and AOT40 – showed similarities with the high temperatures distribution. The zone of highest exposure was located over Central Europe along the advection path of the hot African air mass. The exposure to high ozone concentrations in higher latitudes was reduced by the dilution and aging of polluted air masses advected from over Central Europe.


2020 ◽  
Vol 10 (3) ◽  
pp. 1149 ◽  
Author(s):  
Alfredo Rocha ◽  
Susana C. Pereira ◽  
Carolina Viceto ◽  
Rui Silva ◽  
Jorge Neto ◽  
...  

Heat waves are large-scale atmospheric phenomena that may cause heat stress in ecosystems and socio-economic activities. In cities, morbidity and mortality may increase during a heat wave, overloading health and emergency services. In the face of climate change and associated warming, cities need to adapt and mitigate the effects of heat waves. This study suggests a new method to evaluate heat waves’ impacts on cities by considering some aspects of heat waves that are not usually considered in other similar studies. The method devises heat wave quantities that are easy to calculate; it is relevant to assessing their impacts and permits the development of adaptation measures. This study applies the suggested method to quantify various aspects of heat waves in Lisbon for future climate projections considering future mid-term (2046–2065) and long-term (2081–2100) climates under the RCP8.5 greenhouse emission scenario. This is achieved through the analysis of various regional climate simulations performed with the WRF model and an ensemble of EURO-CORDEX models. This allows an estimation of uncertainty and confidence of the projections. To evaluate the climate change properties of heat waves, statistics for future climates are compared to those for a reference recent climate. Simulated temperatures are first bias corrected to minimize the model systematic errors relative to observations. The temperature for mid and long-term futures is expected to increase relative to the present by 1.6 °C and 3.6 °C, respectively, with late summer months registering the highest increases. The number of heat wave days per year will increase on average from 10, in the present climate, to 38 and 63 in mid and long-term climates, respectively. Heat wave duration, intensity, average maximum temperature, and accumulated temperature during a heat wave will also increase. Heat waves account for an annual average of accumulated temperature of 358 °C·day in the present climate, while in the mid and long-term, future climates account for 1270 °C·day and 2078 °C·day, respectively. The largest increases are expected to occur from July to October. Extreme intensity and long-duration heat waves with an average maximum temperature of more than 40 °C are expected to occur in the future climates.


2020 ◽  
Author(s):  
Ondřej Lhotka ◽  
Jan Kyselý

<p>Europe experienced several major heat waves in the recent summers, substantially affecting human society and environment. Heat waves are generally related to joint effect of perturbed atmospheric circulation and anomalies in surface energy budget, and they are often linked to hydrological preconditioning. Contributions of these driving mechanisms, however, vary across European climatic zones. Climate models struggle to simulate the spatial differences properly, ultimately leading to large uncertainties in future heat waves’ characteristics. As the first step towards identifying spatial patterns of differences between driving mechanisms of temperature extremes, a pan-European database of observed major heat waves has been created. Heat waves are studied using the E-OBS 20.0e dataset in 0.1° horizontal grid spacing, which is analogous to that used in the ERA5 reanalysis and CORDEX regional climate models. Magnitude of heat waves is defined with respect to local daily maximum temperature (Tmax) variance, using multiples of standard deviation of Tmax summed across individual events. For each heat wave, circulation conditions and surface energy fluxes are analysed using the ERA5 reanalysis, in order to study their links to the heat wave magnitude and geographical location. In the next step, these findings are used for analyzing spatial patterns of heat wave mechanisms and as a source of reference data for evaluation of relevant processes in climate models.</p>


2020 ◽  
Author(s):  
Miyeong Jo ◽  
Jiyeun Ye ◽  
Jihye Yun ◽  
Jaeeun You ◽  
Juyeong Kim ◽  
...  

<p>The frequency of extreme weather phenomena such as heat wave and cold wave has increased recently, and the intensity of weather has been strengthened, resulting in human and physical damage. The Republic of Korea has been working to reduce damage since 2018 by including heat and cold waves in natural disasters. The Korea Meteorological Administration (KMA) also provides impact-based forecasts, which requires research that suits local characteristics. In this study, weather observation data related to the summer heat wave in Busan, Ulsan and South Gyeongsang Province was analyzed to determine the weather conditions for the heat wave. In addition, in relation to the heat wave impact-based forecast that was provided regularly in 2019, the heat threshold was applied by comparing the current status of the heat-related patients with the maximum temperature, the number of consecutive days of the heat wave and the current status of the heat-related patients. The impacts of heat waves in different fields were analyzed, including livestock waste, fisheries food damage, and heat damage by crops. The cold wave also analyzed the number of days of cold wave in Busan, Ulsan, and South Gyeongsang Province by comparing the lowest temperature with the current status of cold-related patients. The impacts of cold weather conditions such as wind direction, wind speed and the number of consecutive days of the cold wave were also analyzed. Further, for regular provision of cold wave impact-based forecast to be implemented in 2020, the impacts of each cold wave vulnerable areas suitable for Busan, Ulsan, and South Gyeongsang Province were analyzed and referred to when applying cold wave thresholds.</p>


Sign in / Sign up

Export Citation Format

Share Document