scholarly journals Biofilms from Pathogenic Bacteria in Food Processing Environments: Formation and Preventive Disinfection Procedures

2021 ◽  
pp. 12-19
Author(s):  
Sarah Hwa In Lee ◽  
Marina Resende Pimenta Portinari ◽  
Carlos Humberto Corassin ◽  
Carlos Augusto Fernandes Oliveira

The ability of some pathogenic bacterial species to form biofilms on surfaces of equipment and utensils is of great concern to the food industry since they represent a continuous source of contamination in food processing environments. In this review, the factors involved in the formation of microbial biofilms are highlighted, along with a discussion on the preventive disinfection procedures recommended to avoid the attachment of microbial cells on surfaces of equipment and utensils in food processing areas. Relevant articles published in the last 10 years (2012-present) were selected in PubMed, Science Direct, and Google Scholar. Methods for assessing the adhesion and biofilm formation ability of strains isolated from surfaces in the food industry environment are also presented.

2021 ◽  
Author(s):  
Lei Yuan ◽  
Fedrick C Mgomi ◽  
Zhenbo Xu ◽  
Ni Wang ◽  
Guoqing He ◽  
...  

Biofilms constitute a protective barrier for foodborne pathogens to survive under stressful food processing conditions. Therefore, studies into the development and control of biofilms by novel techniques are vital for the food industry. In recent years, foodomics techniques have been developed for biofilm studies, which contributed to a better understanding of biofilm behavior, physiology, composition, as well as their response to antibiofilm methods at different molecular levels including genes, RNA, proteins and metabolic metabolites. Throughout this review, the main studies where foodomics tools used to explore the mechanisms for biofilm formation, dispersal and elimination were reviewed. The data summarized from relevant studies are important to design novel and appropriate biofilm elimination methods for enhancing food safety at any point of food processing lines.


2003 ◽  
Vol 69 (9) ◽  
pp. 5648-5655 ◽  
Author(s):  
Trond Møretrø ◽  
Lene Hermansen ◽  
Askild L. Holck ◽  
Maan S. Sidhu ◽  
Knut Rudi ◽  
...  

ABSTRACT In clinical staphylococci, the presence of the ica genes and biofilm formation are considered important for virulence. Biofilm formation may also be of importance for survival and virulence in food-related staphylococci. In the present work, staphylococci from the food industry were found to differ greatly in their abilities to form biofilms on polystyrene. A total of 7 and 21 of 144 food-related strains were found to be strong and weak biofilm formers, respectively. Glucose and sodium chloride stimulated biofilm formation. The biofilm-forming strains belonged to nine different coagulase-negative species of Staphylococcus. The icaA gene of the intercellular adhesion locus was detected by Southern blotting and hybridization in 38 of 67 food-related strains tested. The presence of icaA was positively correlated with strong biofilm formation. The icaA gene was partly sequenced for 22 food-related strains from nine different species of Staphylococcus, and their icaA genes were found to have DNA similarities to previously sequenced icaA genes of 69 to 100%. Northern blot analysis indicated that the expression of the ica genes was higher in strong biofilm formers than that seen with strains not forming biofilms. Biofilm formation on polystyrene was positively correlated with biofilm formation on stainless steel and with resistance to quaternary ammonium compounds, a group of disinfectants.


2019 ◽  
Vol 68 (2) ◽  
pp. 263-268 ◽  
Author(s):  
JI-HOI MOON ◽  
MI HEE NOH ◽  
EUN-YOUNG JANG ◽  
SEOK BIN YANG ◽  
SANG WOOK KANG ◽  
...  

Polyphosphate (polyP) is a food additive with antimicrobial activity. Here we evaluated the effects of sodium tripolyphosphate (polyP3, Na5P3O10) on four major oral bacterial species, in both single- and mixed-culture. PolyP3 inhibited three opportunistic pathogenic species: Fusobacterium nucleatum, Prevotella intermedia, and Porphyromonas gingivalis. On the contrary, a commensal bacterium Streptococcus gordonii was relatively less susceptible to polyP3 than the pathogens. When all bacterial species were co-cultured, polyP3 (≥ 0.09%) significantly reduced their total growth and biofilm formation, among which the three pathogenic bacteria were selectively inhibited. Collectively, polyP3 may be an alternative antibacterial agent to control oral pathogenic bacteria.


2015 ◽  
Vol 61 (7) ◽  
pp. 503-512 ◽  
Author(s):  
Trond Møretrø ◽  
Shahab Sharifzadeh ◽  
Solveig Langsrud ◽  
Even Heir ◽  
Alexander H. Rickard

In this study, coaggregation interactions between Rhodococcus and Acinetobacter strains isolated from food-processing surfaces were characterized. Rhodococcus sp. strain MF3727 formed intrageneric coaggregates with Rhodococcus sp. strain MF3803 and intergeneric coaggregates with 2 strains of Acinetobacter calcoaceticus (MF3293, MF3627). Stronger coaggregation between A. calcoaceticus MF3727 and Rhodococcus sp. MF3293 was observed after growth in batch culture at 30 °C than at 20 °C, after growth in tryptic soy broth than in liquid R2A medium, and between cells in exponential and early stationary phases than cells in late stationary phase. The coaggregation ability of Rhodococcus sp. MF3727 was maintained even after heat and Proteinase K treatment, suggesting its ability to coaggregate was protein independent whereas the coaggregation determinants of the other strains involved proteinaceous cell-surface-associated polymers. Coaggregation was stable at pH 5–9. The mechanisms of coaggregation among Acinetobacter and Rhodococcus strains bare similarity to those displayed by coaggregating bacteria of oral and freshwater origin, with respect to binding between proteinaceous and nonproteinaceous determinants and the effect of environmental factors on coaggregation. Coaggregation may contribute to biofilm formation on industrial food surfaces, protecting bacteria against cleaning and disinfection.


2019 ◽  
Vol 10 (1) ◽  
pp. 173-195 ◽  
Author(s):  
Avelino Alvarez-Ordóñez ◽  
Laura M. Coughlan ◽  
Romain Briandet ◽  
Paul D. Cotter

This review examines the impact of microbial communities colonizing food processing environments in the form of biofilms on food safety and food quality. The focus is both on biofilms formed by pathogenic and spoilage microorganisms and on those formed by harmless or beneficial microbes, which are of particular relevance in the processing of fermented foods. Information is presented on intraspecies variability in biofilm formation, interspecies relationships of cooperativism or competition within biofilms, the factors influencing biofilm ecology and architecture, and how these factors may influence removal. The effect on the biofilm formation ability of particular food components and different environmental conditions that commonly prevail during food processing is discussed. Available tools for the in situ monitoring and characterization of wild microbial biofilms in food processing facilities are explored. Finally, research on novel agents or strategies for the control of biofilm formation or removal is summarized.


2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Adriana Marcia Nicolau Korres ◽  
Gloria Maria de Farias V. Aquije ◽  
David S. Buss ◽  
Jose Aires Ventura ◽  
Patricia Machado Bueno Fernandes ◽  
...  

Some bacterial species can colonize humans and plants. It is almost impossible to prevent the contact of clinically pathogenic bacteria with food crops, and if they can persist there, they can reenter the human food chain and cause disease. On the leaf surface, microorganisms are exposed to a number of stress factors. It is unclear how they survive in such different environments. By increasing adhesion to diverse substrates, minimizing environmental differences, and providing protection against defence mechanisms, biofilms could provide part of the answer.Klebsiella pneumoniaesubsp.pneumoniaeis clinically important and also associated with fruit diseases, such as “pineapple fruit collapse.” We aimed to characterize biofilm formation and adhesion mechanisms of this species isolated from pineapple in comparison with a clinical isolate. No differences were found between the two isolates quantitatively or qualitatively. Both tested positive for capsule formation and were hydrophobic, but neither produced adherence fibres, which might account for their relatively weak adhesion compared to the positive controlStaphylococcus epidermidisATCC 35984. Both produced biofilms on glass and polystyrene, more consistently at 40°C than 35°C, confirmed by atomic force and high-vacuum scanning electron microscopy. Biofilm formation was maintained in an acidic environment, which may be relevant phytopathologically.


2019 ◽  
Vol 20 (6) ◽  
pp. 655-667 ◽  
Author(s):  
Fazlurrahman Khan ◽  
Aqib Javaid ◽  
Young-Mog Kim

The formation of biofilm by pathogenic bacteria is considered as one of the most powerful mechanisms/modes of resistance against the action of several antibiotics. Biofilm is formed as a structural adherent over the surfaces of host, food and equipments etc. and is further functionally coordinated by certain chemicals produced itself. These chemicals are known as quorum sensing (QS) signaling molecules and are involved in the cross talk at interspecies, intraspecies and interkingdom levels thus resulting in the production of virulence factors leading to pathogenesis. Bacteria possess receptors to sense these chemicals, which interact with the incoming QS molecules. It is followed by the secretion of virulence molecules, regulation of bioluminescence, biofilm formation, antibiotic resistance development and motility behavioral responses. In the natural environment, different bacterial species (Gram-positive and Gram-negative) produce QS signaling molecules that are structurally and functionally different. Recent and past research shows that various antagonistic molecules (naturally and chemically synthesized) are characterized to inhibit the formation of biofilm and attenuation of bacterial virulence by blocking the QS receptors. This review article describes about the diverse QS receptors at their structural, functional and production levels. Thus, by blocking these receptors with inhibitory molecules can be a potential therapeutic approach to control pathogenesis. Furthermore, these receptors can also be used as a structural platform to screen the most potent inhibitors with the help of bioinformatics approaches.


2021 ◽  
Author(s):  
B. Baráti-Deák ◽  
Á. Belák ◽  
Cs. Mohácsi-Farkas

AbstractPreviously isolated Pseudomonas lundensis CP-P-5 had antagonistic activity against Salmonella Hartford, Yersinia enterocolitica, and Escherichia coli. In this study, determination of its antagonistic mechanism and potential field of application in food industry was aimed. Using cellophane-test and microcultures of the test strain's cell-free supernatant mixed with the pathogens, our results showed that cells of P. lundensis CP-P-5 and its concentrated cell-free supernatants were effective against the foodborne bacteria, and the supernatants contained more than one compound responsible for inhibitory activity. Searching for the antagonistic compound, NaOH, protease, and heat treatments were done to the supernatants, and proteolytic activity and siderophore production were also tested using the antagonistic strain. Our results support the potential applicability of P. lundensis CP-P-5 as a bioprotective agent against foodborne pathogens in food processing environments.


2021 ◽  
Vol 4 (2) ◽  
pp. 11-16
Author(s):  
A.H. Jauro ◽  
I. Shu’aibu ◽  
G. Lawan ◽  
M.T. Adamu ◽  
M.Y. Iliyasu ◽  
...  

The development of biofilms by the foodborne pathogens attached to surfaces in the food processing environments results in the deterioration of products, persistence of pathogenic bacteria and transmission of food-associated diseases. In addition, biofilms are more resistant to antimicrobials than their planktonic counterparts which make their elimination from food and the food processing facilities a great challenge. This study aim was to determine the inhibitory effect of food additives on biofilm forming Escherichia coli O157:H7. The isolate obtained was subjected to Gram’s staining and various biochemical identifications and later confirmed by latex agglutination test. Biofilm formation potential was done on Congo red media and the confirmed biofilm former was subjected to biofilm formation at 10℃ and 37℃ for 168hrs. Antimicrobial susceptibility testing, MIC, MBC, and antibiofilm effect was determined following CLSI 2017 guideline. The highest zone of growth inhibition of 31 mm was exhibited by cinnamaldehyde, sodium nitrite with 26 mm and sodium citrate with 13 mm. The MIC 2.5 mg/mL was recorded for sodium citrate, 0.25 mg/mL for sodium nitrite and 0.125 μl/mL for cinnamaldehyde. Strong biofilm was formed at 37 ℃ with 7.82 x 109 CFU/mL viable cells at 168hrs while 6.79 x 109 CFU/mL were obtained at 10 ℃. All the three additives showed antibiofilm effect (at 10℃ and 37℃), cinnamaldehyde exhibited 70%-90.1%, sodium nitrite; 70%-88.2% inhibition and sodium nitrite; 75%-88% inhibition respectively. This study showed that sodium citrate, sodium nitrite and cinnamaldehyde exerted strong antimicrobial and antibiofilm properties indicating their potential as good preservatives.


2017 ◽  
Vol 83 (14) ◽  
Author(s):  
Kristina Borch-Pedersen ◽  
Hilde Mellegård ◽  
Kai Reineke ◽  
Preben Boysen ◽  
Robert Sevenich ◽  
...  

ABSTRACT Bacillus and Clostridium species form spores, which pose a challenge to the food industry due to their ubiquitous nature and extreme resistance. Pressurization at <300 MPa triggers spore germination by activating germination receptors (GRs), while pressurization at >300 MPa likely triggers germination by opening dipicolinic acid (DPA) channels present in the inner membrane of the spores. In this work, we expose spores of Bacillus licheniformis, a species associated with food spoilage and occasionally with food poisoning, to high pressure (HP) for holding times of up to 2 h. By using mutant spores lacking one or several GRs, we dissect the roles of the GerA, Ynd, and GerK GRs in moderately HP (mHP; 150 MPa)-induced spore germination. We show that Ynd alone is sufficient for efficient mHP-induced spore germination. GerK also triggers germination with mHP, although at a reduced germination rate compared to that of Ynd. GerA stimulates mHP-induced germination but only in the presence of either the intact GerK or Ynd GR. These results suggests that the effectiveness of the individual GRs in mHP-induced germination differs from their effectiveness in nutrient-induced germination, where GerA plays an essential role. In contrast to Bacillus subtilis spores, treatment with very HP (vHP) of 550 MPa at 37°C did not promote effective germination of B. licheniformis spores. However, treatment with vHP in combination with elevated temperatures (60°C) gave a synergistic effect on spore germination and inactivation. Together, these results provide novel insights into how HP affects B. licheniformis spore germination and inactivation and the role of individual GRs in this process. IMPORTANCE Bacterial spores are inherently resistant to food-processing regimes, such as high-temperature short-time pasteurization, and may therefore compromise food durability and safety. The induction of spore germination facilitates subsequent inactivation by gentler processing conditions that maintain the sensory and nutritional qualities of the food. High-pressure (HP) processing is a nonthermal food-processing technology used to eliminate microbes from food. The application of this technology for spore eradication in the food industry requires a better understanding of how HP affects the spores of different bacterial species. The present study provides novel insights into how HP affects Bacillus licheniformis spores, a species associated with food spoilage and occasionally food poisoning. We describe the roles of different germination receptors in HP-induced germination and the effects of two different pressure levels on the germination and inactivation of spores. This study will potentially contribute to the effort to implement HP technology for spore inactivation in the food industry.


Sign in / Sign up

Export Citation Format

Share Document