scholarly journals Characterisation of Pseudomonas lundensis CP-P-5 as a potential antagonist of foodborne pathogenic bacteria

2021 ◽  
Author(s):  
B. Baráti-Deák ◽  
Á. Belák ◽  
Cs. Mohácsi-Farkas

AbstractPreviously isolated Pseudomonas lundensis CP-P-5 had antagonistic activity against Salmonella Hartford, Yersinia enterocolitica, and Escherichia coli. In this study, determination of its antagonistic mechanism and potential field of application in food industry was aimed. Using cellophane-test and microcultures of the test strain's cell-free supernatant mixed with the pathogens, our results showed that cells of P. lundensis CP-P-5 and its concentrated cell-free supernatants were effective against the foodborne bacteria, and the supernatants contained more than one compound responsible for inhibitory activity. Searching for the antagonistic compound, NaOH, protease, and heat treatments were done to the supernatants, and proteolytic activity and siderophore production were also tested using the antagonistic strain. Our results support the potential applicability of P. lundensis CP-P-5 as a bioprotective agent against foodborne pathogens in food processing environments.

2020 ◽  
Vol 49 (4) ◽  
pp. 415-423
Author(s):  
B. Baráti-Deák ◽  
Cs. Mohácsi-Farkas ◽  
Á. Belák

Bacterial strains with inhibitory effect on Salmonella Hartford, Listeria monocytogenes, Yersinia enterocolitica, and Escherichia coli, respectively, were isolated. Out of the 64 bacteria originated from food processing environments, 20 could inhibit at least one of the tested pathogens, and it was proved that growth decline of the pathogenic bacteria was more remarkable by co-culturing than by using cell-free supernatants of the isolates. Seven different genera (Pseudomonas, Bacillus, Paenibacillus, Macrococcus, Staphylococcus, Serratia, and Rothia) reduced the pathogens’ growth during the time period of analysis, and the strongest inhibitory effect was observed after 24 h between 15 and 30 °C. Sensitivity of the tested human pathogenic bacteria against the inhibitory strains was distinct, as Y. enterocolitica could be inhibited by numerous isolates, while S. Hartford proved to be the most resistant. Our results reveal that the isolated bacteria or their excreted metabolites could hinder pathogen growth when used in sufficient quantities.


2020 ◽  
Vol 10 (6) ◽  
pp. 6974-6990

Pigments from microbial sources considered a promising approach in food industry applications as a food colorant and biopreservatives agents. This study aims to evaluate the antimicrobial activity of purified pyocyanin against foodborne pathogens and study the safety of pyocyanin by toxicity determination. Purification and structure elucidation of pyocyanin was carried out using a UV-Vis spectrophotometer, Fourier Transform Infra-Red Spectroscopy (FTIR) and GC-MS analysis. Pyocyanin showed antibacterial activity against 9 species of foodborne pathogenic bacteria with a zone of inhibition from 10.8 to 22.6 mm, and minimum inhibitory concentration (MIC) value ranged between 33.3 to 233.3 µg ml-1. Also, pyocyanin has antifungal activity against 10 mycotoxigenic fungi strains with inhibition zone value ranged from 7.0 to 17.6 mm and MIC value from 58.3 to 250 µg ml-1. No toxicity was observed on shrimp nauplii up to 50 µg ml-1 for 12 and 24 h of exposure and up to 100 µg ml-1 for 12 h. Also, no toxicity was recorded with pyocyanin using mouse bioassay up to 750 µg ml-1, while 1000 µg ml-1 observed toxicity equal to 3.28 MU (mouse unit). Pyocyanin had antimicrobial activity against a wide range of foodborne pathogenic bacteria and mycotoxigenic fungi. Consequently, pyocyanin can be used as a cheap and safe source in the food industry and pharmaceutical applications.


Foods ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1786
Author(s):  
György Schneider ◽  
Bettina Schweitzer ◽  
Anita Steinbach ◽  
Botond Zsombor Pertics ◽  
Alysia Cox ◽  
...  

Contamination of meats and meat products with foodborne pathogenic bacteria raises serious safety issues in the food industry. The antibacterial activities of phosphorous-fluorine co-doped TiO2 nanoparticles (PF-TiO2) were investigated against seven foodborne pathogenic bacteria: Campylobacter jejuni, Salmonella Typhimurium, Enterohaemorrhagic E. coli, Yersinia enterocolitica, Shewanella putrefaciens, Listeria monocytogenes and Staphylococcus aureus. PF-TiO2 NPs were synthesized hydrothermally at 250 °C for 1, 3, 6 or 12 h, and then tested at three different concentrations (500 μg/mL, 100 μg/mL, 20 μg/mL) for the inactivation of foodborne bacteria under UVA irradiation, daylight exposure or dark conditions. The antibacterial efficacies were compared after 30 min of exposure to light. Distinct differences in the antibacterial activities of the PF-TiO2 NPs, and the susceptibilities of tested foodborne pathogenic bacterium species were found. PF-TiO2/3 h and PF-TiO2/6 h showed the highest antibacterial activity by decreasing the living bacterial cell number from ~106 by ~5 log (L. monocytogenes), ~4 log (EHEC), ~3 log (Y. enterolcolitca, S. putrefaciens) and ~2.5 log (S. aureus), along with complete eradication of C. jejuni and S. Typhimurium. Efficacy of PF-TiO2/1 h and PF-TiO2/12 h NPs was lower, typically causing a ~2–4 log decrease in colony forming units depending on the tested bacterium while the effect of PF-TiO2/0 h was comparable to P25 TiO2, a commercial TiO2 with high photocatalytic activity. Our results show that PF-co-doping of TiO2 NPs enhanced the antibacterial action against foodborne pathogenic bacteria and are potential candidates for use in the food industry as active surface components, potentially contributing to the production of meats that are safe for consumption.


2021 ◽  
Vol 12 (1) ◽  
pp. 85-93
Author(s):  
Wallapat Phongtang ◽  
Ekachai Chukeatirote

Abstract Bacillus cereus is considered to be an important food poisoning agent causing diarrhea and vomiting. In this study, the occurrence of B. cereus bacteriophages in Thai fermented soybean products (Thua Nao) was studied using five B. cereus sensu lato indicator strains (four B. cereus strains and one B. thuringiensis strain). In a total of 26 Thua Nao samples, there were only two bacteriophages namely BaceFT01 and BaceCM02 exhibiting lytic activity against B. cereus. Morphological analysis revealed that these two bacteriophages belonged to the Myoviridae. Both phages were specific to B. cereus and not able to lyse other tested bacteria including B. licheniformis and B. subtilis. The two phages were able to survive in a pH range between 5 and 12. However, both phages were inactive either by treatment of 50°C for 2 h or exposure of UV for 2 h. It should be noted that both phages were chloroform-insensitive, however. This is the first report describing the presence of bacteriophages in Thua Nao products. The characterization of these two phages is expected to be useful in the food industry for an alternative strategy including the potential use of the phages as a biocontrol candidate against foodborne pathogenic bacteria.


2020 ◽  
Vol 13 (1) ◽  
Author(s):  
Celosia Lukman ◽  
Christopher Yonathan ◽  
Stella Magdalena ◽  
Diana Elizabeth Waturangi

Abstract Objective This study was conducted to isolate and characterize lytic bacteriophages for pathogenic Escherichia coli from chicken and beef offal, and analyze their capability as biocontrol for several foodborne pathogens. Methods done in this research are bacteriophage isolation, purification, titer determination, application, determination of host range and minimum multiplicity of infection (miMOI), and bacteriophage morphology. Results Six bacteriophages successfully isolated from chicken and beef offal using EPEC and EHEC as host strain. Bacteriophage titers observed between 109 and 1010 PFU mL−1. CS EPEC and BL EHEC bacteriophage showed high efficiency in reduction of EPEC or EHEC contamination in meat about 99.20% and 99.04%. The lowest miMOI was 0.01 showed by CS EPEC bacteriophage. CI EPEC and BL EPEC bacteriophage suspected as Myoviridae family based on its micrograph from Transmission Electron Microscopy (TEM). Refers to their activity, bacteriophages isolated in this study have a great potential to be used as biocontrol against several foodborne pathogens.


Foods ◽  
2020 ◽  
Vol 9 (2) ◽  
pp. 235 ◽  
Author(s):  
Rosa Palmeri ◽  
Lucia Parafati ◽  
Elena Arena ◽  
Emanuela Grassenio ◽  
Cristina Restuccia ◽  
...  

Consumer interest toward natural ingredients is creating a growing trend in the food industry and research for the development of natural products such as colorants, antimicrobials and antioxidants. Semi-processed frozen prickly pear (Opuntia ficus-indica (L.) Mill.) juices (PPJs), obtained from three cultivars with white, red and yellow pulp, with different harvest times (“Agostani” and “Bastardoni”), were characterized for betalains, total phenolics, flavonoids, carotenoids, antioxidant capacity (by 2,2-diphenyl-1-picryl-hydrazyl-hydrate (DPPH)) and antimicrobial potential against foodborne pathogenic bacteria. Through chemical assays, PPJs showed high contents of total polyphenols, flavonoids and betalains and marked antioxidant capacity. PPJs from the first harvest (“Agostani”) revealed the significantly highest amount of polyphenols in white cultivar and of betacyanin and betaxanthin in yellow and red cultivars; antioxidant capacity was significantly higher in “Agostani” PPJs than in “Bastardoni” ones. Regarding antimicrobial potential, all PPJs revealed good antibacterial activity, particularly against Salmonella enterica as evidenced by the widest inhibition haloes. These results encourage the suitability of the first flowering prickly pear fruits, with low market value as fresh fruit but with high nutritional features, to be processed as semi-finished product. In particular, its use as ingredient in foods with high risk of Salmonella contamination may act as a natural preservative.


Sensors ◽  
2019 ◽  
Vol 19 (5) ◽  
pp. 1100 ◽  
Author(s):  
Jasmina Vidic ◽  
Priya Vizzini ◽  
Marisa Manzano ◽  
Devon Kavanaugh ◽  
Nalini Ramarao ◽  
...  

Foodborne pathogenic bacteria present a crucial food safety issue. Conventional diagnostic methods are time-consuming and can be only performed on previously produced food. The advancing field of point-of-need diagnostic devices integrating molecular methods, biosensors, microfluidics, and nanomaterials offers new avenues for swift, low-cost detection of pathogens with high sensitivity and specificity. These analyses and screening of food items can be performed during all phases of production. This review presents major developments achieved in recent years in point-of-need diagnostics in land-based sector and sheds light on current challenges in achieving wider acceptance of portable devices in the food industry. Particular emphasis is placed on methods for testing nucleic acids, protocols for portable nucleic acid extraction and amplification, as well as on the means for low-cost detection and read-out signal amplification.


2021 ◽  
Author(s):  
Lei Yuan ◽  
Fedrick C Mgomi ◽  
Zhenbo Xu ◽  
Ni Wang ◽  
Guoqing He ◽  
...  

Biofilms constitute a protective barrier for foodborne pathogens to survive under stressful food processing conditions. Therefore, studies into the development and control of biofilms by novel techniques are vital for the food industry. In recent years, foodomics techniques have been developed for biofilm studies, which contributed to a better understanding of biofilm behavior, physiology, composition, as well as their response to antibiofilm methods at different molecular levels including genes, RNA, proteins and metabolic metabolites. Throughout this review, the main studies where foodomics tools used to explore the mechanisms for biofilm formation, dispersal and elimination were reviewed. The data summarized from relevant studies are important to design novel and appropriate biofilm elimination methods for enhancing food safety at any point of food processing lines.


2011 ◽  
Vol 74 (5) ◽  
pp. 849-864 ◽  
Author(s):  
SILVIO PENG ◽  
TAURAI TASARA ◽  
JÖRG HUMMERJOHANN ◽  
ROGER STEPHAN

The ability of foodborne pathogens to survive in certain foods mainly depends on stress response mechanisms. Insight into molecular properties enabling pathogenic bacteria to survive in food is valuable for improvement of the control of pathogens during food processing. Raw milk cheeses are a potential source for human infections with Shiga toxin–producing Escherichia coli (STEC). In this review, we focused on the stress response mechanisms important for allowing STEC to survive raw milk cheese production processes. The major components and regulation pathways for general, acid, osmotic, and heat shock stress responses in E. coli and the implications of these responses for the survival of STEC in raw milk cheeses are discussed.


Author(s):  
T. Ganesh Kumar ◽  
P. Mahesh Reddy ◽  
C. V. Rajagopala Reddy

Recent innovations in nanotechnology have transformed a number of scientific and industrial areas including the food industry. Applications of nanotechnology have emerged with increasing need of nanoparticle uses in various fields of food science and food microbiology, including food processing, food packaging, functional food development, food safety, detection of foodborne pathogens, and shelf-life extension of food and/or food products. This review summarizes the potential of nanoparticles for their uses in the food industry in order to provide consumers a safe and contamination free food and to ensure the consumer acceptability of the food with enhanced functional properties.


Sign in / Sign up

Export Citation Format

Share Document