scholarly journals Targeted Disruption of Outer Limiting Membrane Junctional Proteins (Crb1 and ZO-1) Increases Integration of Transplanted Photoreceptor Precursors into the Adult Wild-Type and Degenerating Retina

2010 ◽  
Vol 19 (4) ◽  
pp. 487-503 ◽  
Author(s):  
R. A. Pearson ◽  
A. C. Barber ◽  
E. L. West ◽  
R. E. Maclaren ◽  
Y. Duran ◽  
...  

Diseases culminating in photoreceptor loss are a major cause of untreatable blindness. Transplantation of rod photoreceptors is feasible, provided donor cells are at an appropriate stage of development when transplanted. Nevertheless, the proportion of cells that integrate into the recipient outer nuclear layer (ONL) is low. The outer limiting membrane (OLM), formed by adherens junctions between Müller glia and photoreceptors, may impede transplanted cells from migrating into the recipient ONL. Adaptor proteins such as Crumbs homologue 1 (Crb1) and zona occludins (ZO-1) are essential for localization of the OLM adherens junctions. We investigated whether targeted disruption of these proteins enhances donor cell integration. Transplantation of rod precursors in wild-type mice achieved 949 ± 141 integrated cells. By contrast, integration is significantly higher when rod precursors are transplanted into Crb1rd8/rd8 mice, a model of retinitis pigmentosa and Lebers congenital amaurosis that lacks functional CRB1 protein and displays disruption of the OLM (7,819 ± 1,297; maximum 15,721 cells). We next used small interfering (si)RNA to transiently reduce the expression of ZO-1 and generate a reversible disruption of the OLM. ZO-1 knockdown resulted in similar, significantly improved, integration of transplanted cells in wild-type mice (7,037 ± 1,293; maximum 11,965 cells). Finally, as the OLM remains largely intact in many retinal disorders, we tested whether transient ZO-1 knockdown increased integration in a model of retinitis pigmentosa, the rho-/- mouse; donor cell integration was significantly increased from 313 ± 58 cells without treatment to 919 ± 198 cells after ZO-1 knockdown. This study shows that targeted disruption of OLM junctional proteins enhances integration in the wild-type and degenerating retina and may be a useful approach for developing photoreceptor transplantation strategies.

2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
Takayuki Gonome ◽  
Yuting Xie ◽  
Saeko Arai ◽  
Kodai Yamauchi ◽  
Natsuki Maeda-Monai ◽  
...  

Purpose. To investigate the longitudinal findings of fundus features and spectral-domain optical coherence tomography (SD-OCT) to characterize the morphologic features in a mouse model of defective glutamate/aspartate transporter (GLAST−/− mice). Materials and Methods. The fundus findings and SD-OCT images were longitudinally recorded at five time points from postnatal (P) 22 to P156 in GLAST−/− mice. As a control wild type, age-matched C57BL/6J mice were employed. The mouse retina was subdivided into five layers, and the thickness of each layer was longitudinally measured by InSight® using SD-OCT pictures. The SD-OCT findings were compared with the histologic appearances. The diameter of the retinal blood vessels was measured by the ImageJ® software program using SD-OCT images. The data were statistically compared between both age-matched mouse groups. Results. The retinal blood vessels appeared more dilated in GLAST−/− mice than in wild-type mice. This tendency was statistically significant at all time points after P44 by analyses using SD-OCT images. The ganglion cell complex (GCC) and outer nuclear layer (ONL) were significantly thinner in GLAST−/− mice at all time points after P80 than in the wild-type mice. This tendency was more clearly indicated by SD-OCT than histologic sections. Discussion. In the present study, we found for the first time the dilation of the retinal blood vessels and the thinning of the ONL in GLAST−/− mice, in addition to the thinning of the GCC.


2002 ◽  
Vol 283 (3) ◽  
pp. F569-F577 ◽  
Author(s):  
Roman Aizman ◽  
Carol Asher ◽  
Maria Füzesi ◽  
Hedva Latter ◽  
Peter Lonai ◽  
...  

Corticosteroid hormone-induced factor (CHIF) is a short epithelial-specific protein that is independently induced by aldosterone and a high-K+ diet. It is a member of the FXYD family of single-span transmembrane proteins that include phospholemman, Mat-8, and the γ-subunit of Na+-K+-ATPase. A number of studies have suggested that these proteins are involved in the regulation of ion transport and, in particular, functionally interact with the Na+-K+-ATPase. The present study describes the characterization, targeted disruption, and phenotypic analysis of the mouse CHIF gene. The CHIF knockout mice are viable and not distinguishable from wild-type littermates under normal conditions. Under K+ loading, they have a twofold higher urine volume and an increased glomerular filtration rate. Similar but smaller effects are observed in mice fed a low-Na+ diet. Treating K+-loaded mice for 10 days with furosemide resulted in lethality in the knockout mice (17 of 39) but not in the wild-type group (1 of 39). The data are consistent with an effect of CHIF on the Na+-K+-ATPase that is specific to the outer and inner medullary duct, its major expression site.


Blood ◽  
2003 ◽  
Vol 102 (9) ◽  
pp. 3154-3162 ◽  
Author(s):  
Minoru Tanaka ◽  
Yoko Hirabayashi ◽  
Takashi Sekiguchi ◽  
Tohru Inoue ◽  
Motoya Katsuki ◽  
...  

AbstractOncostatin M (OSM) is a multifunctional cytokine that belongs to the interleukin 6 (IL-6) family. As OSM is expressed in adult as well as embryonic hematopoietic tissues, OSM has been considered to play a role in hematopoiesis. To uncover roles of OSM, we have generated mutant mice deficient in the OSM-specific receptor β subunit (OSMR). While OSMR–/– mice were healthy and fertile, hematologic analysis of OSMR–/– mice demonstrated that the numbers of peripheral erythrocytes and platelets were reduced compared with wild-type mice. Consistent with this, progenitors of erythroid and megakaryocyte lineages were reduced in OSMR–/– bone marrow (BM), suggesting that OSM is required for the maintenance of erythroid and megakaryocyte progenitor pools in BM. To investigate whether OSM acts on the hematopoietic progenitors directly or indirectly, we performed BM transplantation experiments. The OSMR–/– mice, engrafted with wild-type BM cells, failed to produce erythrocytic and megakaryocytic progenitors to the levels in wild-type mice, indicating that OSM affects hematopoietic microenvironments. On the other hand, erythrocytic and megakaryocytic progenitors were reduced in the wild-type mice reconstituted with OSMR–/– BM cells. Thus, OSM regulates hematopoiesis in vivo by stimulating stromal cells as well as hematopoietic progenitors, in particular megakaryocytic and erythrocytic progenitors.


Author(s):  
Thecan Caesar-Ton That ◽  
Lynn Epstein

Nectria haematococca mating population I (anamorph, Fusarium solani) macroconidia attach to its host (squash) and non-host surfaces prior to germ tube emergence. The macroconidia become adhesive after a brief period of protein synthesis. Recently, Hickman et al. (1989) isolated N. haematococca adhesion-reduced mutants. Using freeze substitution, we compared the development of the macroconidial wall in the wild type in comparison to one of the mutants, LEI.Macroconidia were harvested at 1C, washed by centrifugation, resuspended in a dilute zucchini fruit extract and incubated from 0 - 5 h. During the incubation period, wild type macroconidia attached to uncoated dialysis tubing. Mutant macroconidia did not attach and were collected on poly-L-lysine coated dialysis tubing just prior to freezing. Conidia on the tubing were frozen in liquid propane at 191 - 193C, substituted in acetone with 2% OsO4 and 0.05% uranyl acetate, washed with acetone, and flat-embedded in Epon-Araldite. Using phase contrast microscopy at 1000X, cells without freeze damage were selected, remounted, sectioned and post-stained sequentially with 1% Ba(MnO4)2 2% uranyl acetate and Reynold’s lead citrate. At least 30 cells/treatment were examined.


2007 ◽  
Vol 28 (3) ◽  
pp. 897-906 ◽  
Author(s):  
Thomas J. Pohl ◽  
Jac A. Nickoloff

ABSTRACT Homologous recombination (HR) is critical for DNA double-strand break (DSB) repair and genome stabilization. In yeast, HR is catalyzed by the Rad51 strand transferase and its “mediators,” including the Rad52 single-strand DNA-annealing protein, two Rad51 paralogs (Rad55 and Rad57), and Rad54. A Rad51 homolog, Dmc1, is important for meiotic HR. In wild-type cells, most DSB repair results in gene conversion, a conservative HR outcome. Because Rad51 plays a central role in the homology search and strand invasion steps, DSBs either are not repaired or are repaired by nonconservative single-strand annealing or break-induced replication mechanisms in rad51Δ mutants. Although DSB repair by gene conversion in the absence of Rad51 has been reported for ectopic HR events (e.g., inverted repeats or between plasmids), Rad51 has been thought to be essential for DSB repair by conservative interchromosomal (allelic) gene conversion. Here, we demonstrate that DSBs stimulate gene conversion between homologous chromosomes (allelic conversion) by >30-fold in a rad51Δ mutant. We show that Rad51-independent allelic conversion and break-induced replication occur independently of Rad55, Rad57, and Dmc1 but require Rad52. Unlike DSB-induced events, spontaneous allelic conversion was detected in both rad51Δ and rad52Δ mutants, but not in a rad51Δ rad52Δ double mutant. The frequencies of crossovers associated with DSB-induced gene conversion were similar in the wild type and the rad51Δ mutant, but discontinuous conversion tracts were fivefold more frequent and tract lengths were more widely distributed in the rad51Δ mutant, indicating that heteroduplex DNA has an altered structure, or is processed differently, in the absence of Rad51.


Genetics ◽  
1996 ◽  
Vol 142 (2) ◽  
pp. 383-391 ◽  
Author(s):  
Yasumasa Tsukamoto ◽  
Jun-ichi Kato ◽  
Hideo Ikeda

Abstract To examine the mechanism of illegitimate recombination in Saccharomyces cerevisiae, we have developed a plasmid system for quantitative analysis of deletion formation. A can1 cyh2 cell carrying two negative selection markers, the CAN1 and CYH2 genes, on a YCp plasmid is sensitive to canavanine and cycloheximide, but the cell becomes resistant to both drugs when the plasmid has a deletion over the CAN1 and CYH2 genes. Structural analysis of the recombinant plasmids obtained from the resistant cells showed that the plasmids had deletions at various sites of the CAN1-CYH2 region and there were only short regions of homology (1-5 bp) at the recombination junctions. The results indicated that the deletion detected in this system were formed by illegitimate recombination. Study on the effect of several rad mutations showed that the recombination rate was reduced by 30-, 10-, 10-, and 10-fold in the rad52, rad50, mre11, and xrs2 mutants, respectively, while in the rud51, 54, 55, and 57 mutants, the rate was comparable to that in the wild-type strain. The rad52 mutation did not affect length of homology at junction sites of illegitimate recombination.


Genes ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 618
Author(s):  
Yue Jin ◽  
Shihao Li ◽  
Yang Yu ◽  
Chengsong Zhang ◽  
Xiaojun Zhang ◽  
...  

A mutant of the ridgetail white prawn, which exhibited rare orange-red body color with a higher level of free astaxanthin (ASTX) concentration than that in the wild-type prawn, was obtained in our lab. In order to understand the underlying mechanism for the existence of a high level of free astaxanthin, transcriptome analysis was performed to identify the differentially expressed genes (DEGs) between the mutant and wild-type prawns. A total of 78,224 unigenes were obtained, and 1863 were identified as DEGs, in which 902 unigenes showed higher expression levels, while 961 unigenes presented lower expression levels in the mutant in comparison with the wild-type prawns. Based on Gene Ontology analysis and Kyoto Encyclopedia of Genes and Genomes analysis, as well as further investigation of annotated DEGs, we found that the biological processes related to astaxanthin binding, transport, and metabolism presented significant differences between the mutant and the wild-type prawns. Some genes related to these processes, including crustacyanin, apolipoprotein D (ApoD), cathepsin, and cuticle proteins, were identified as DEGs between the two types of prawns. These data may provide important information for us to understand the molecular mechanism of the existence of a high level of free astaxanthin in the prawn.


Genetics ◽  
1998 ◽  
Vol 149 (2) ◽  
pp. 565-577
Author(s):  
Daniel B Szymanski ◽  
Daniel A Klis ◽  
John C Larkin ◽  
M David Marks

Abstract In Arabidopsis, the timing and spatial arrangement of trichome initiation is tightly regulated and requires the activity of the GLABROUS1 (GL1) gene. The COTYLEDON TRICHOME 1 (COT1) gene affects trichome initiation during late stages of leaf development and is described in this article. In the wild-type background, cot1 has no observable effect on trichome initiation. GL1 overexpression in wild-type plants leads to a modest number of ectopic trichomes and to a decrease in trichome number on the adaxial leaf surface. The cot1 mutation enhances GL1-overexpression-dependent ectopic trichome formation and also induces increased leaf trichome initiation. The expressivity of the cot1 phenotype is sensitive to cot1 and 35S::GL1 gene dosage, and the most severe phenotypes are observed when cot1 and 35S::GL1 are homozygous. The COT1 locus is located on chromosome 2 15.3 cM north of er. Analysis of the interaction between cot1, try, and 35S::GL1 suggests that COT1 is part of a complex signal transduction pathway that regulates GL1-dependent adoption of the trichome cell fate.


2020 ◽  
Vol 22 (1) ◽  
pp. 152
Author(s):  
Dorota Dabrowska ◽  
Justyna Mozejko-Ciesielska ◽  
Tomasz Pokój ◽  
Slawomir Ciesielski

Pseudomonas putida’s versatility and metabolic flexibility make it an ideal biotechnological platform for producing valuable chemicals, such as medium-chain-length polyhydroxyalkanoates (mcl-PHAs), which are considered the next generation bioplastics. This bacterium responds to environmental stimuli by rearranging its metabolism to improve its fitness and increase its chances of survival in harsh environments. Mcl-PHAs play an important role in central metabolism, serving as a reservoir of carbon and energy. Due to the complexity of mcl-PHAs’ metabolism, the manner in which P. putida changes its transcriptome to favor mcl-PHA synthesis in response to environmental stimuli remains unclear. Therefore, our objective was to investigate how the P. putida KT2440 wild type and mutants adjust their transcriptomes to synthesize mcl-PHAs in response to nitrogen limitation when supplied with sodium gluconate as an external carbon source. We found that, under nitrogen limitation, mcl-PHA accumulation is significantly lower in the mutant deficient in the stringent response than in the wild type or the rpoN mutant. Transcriptome analysis revealed that, under N-limiting conditions, 24 genes were downregulated and 21 were upregulated that were common to all three strains. Additionally, potential regulators of these genes were identified: the global anaerobic regulator (Anr, consisting of FnrA, Fnrb, and FnrC), NorR, NasT, the sigma54-dependent transcriptional regulator, and the dual component NtrB/NtrC regulator all appear to play important roles in transcriptome rearrangement under N-limiting conditions. The role of these regulators in mcl-PHA synthesis is discussed.


2021 ◽  
Vol 22 (8) ◽  
pp. 4014
Author(s):  
Lin-Feng Wang ◽  
Ting-Ting Li ◽  
Yu Zhang ◽  
Jia-Xing Guo ◽  
Kai-Kai Lu ◽  
...  

Osmotic stress severely inhibits plant growth and development, causing huge loss of crop quality and quantity worldwide. Melatonin is an important signaling molecule that generally confers plant increased tolerance to various environmental stresses, however, whether and how melatonin participates in plant osmotic stress response remain elusive. Here, we report that melatonin enhances plant osmotic stress tolerance through increasing ROS-scavenging ability, and melatonin receptor CAND2 plays a key role in melatonin-mediated plant response to osmotic stress. Upon osmotic stress treatment, the expression of melatonin biosynthetic genes including SNAT1, COMT1, and ASMT1 and the accumulation of melatonin are increased in the wild-type plants. The snat1 mutant is defective in osmotic stress-induced melatonin accumulation and thus sensitive to osmotic stress, while exogenous melatonin enhances the tolerance of the wild-type plant and rescues the sensitivity of the snat1 mutant to osmotic stress by upregulating the expression and activity of catalase and superoxide dismutase to repress H2O2 accumulation. Further study showed that the melatonin receptor mutant cand2 exhibits reduced osmotic stress tolerance with increased ROS accumulation, but exogenous melatonin cannot revert its osmotic stress phenotype. Together, our study reveals that CADN2 functions necessarily in melatonin-conferred osmotic stress tolerance by activating ROS-scavenging ability in Arabidopsis.


Sign in / Sign up

Export Citation Format

Share Document