Review of Genetic Variants of Butyrylcholinesterase and Their Potential Impact on Human Health

2021 ◽  
Vol 1 (6) ◽  
pp. 135-145
Author(s):  
Bharmatisna Anggaharsya Nugraha

Butyrylcholinesterase (BChE) is an enzyme found in plasma and many other parts of the body. It is enzyme that hydrolyses drugs containing ester bonds such as drugs acting at the neuromuscular junction (succinylcholine) and local anaesthetics (procaine). Examination of the gene for mutations or polymorphisms causing the observed biochemical phenotypes has isolated those responsible for all the most widely known variants. The molecular bases of several genetic variants of BChE have been reported, such as the Atypical variant, fluoride-resistant variant, silent variant, K variant, J variant and C5 variant. In general, BChE polymorphisms have been shown to produce enzymes with varying levels of catalytic activity. Genetic variants of human butyrylcholinesterase were one of the first examples in the new field of pharmacogenetics when it was recognized that abnormal response to the succinylcholine was due to a mutated enzyme with low binding affinity. Beside that, variant of BChE has potential impact for Alzheimer disease patology.

2021 ◽  
Vol 1 (1) ◽  
pp. 23-28
Author(s):  
Bharmatisna Anggaharsya Nugraha

Butyrylcholinesterase (BChE) is an enzyme found in plasma and many other parts of the body. It is enzyme that hydrolyses drugs containing ester bonds such as drugs acting at the neuromuscular junction (succinylcholine) and local anaesthetics (procaine). Examination of the gene for mutations or polymorphisms causing the observed biochemical phenotypes has isolated those responsible for all the most widely known variants. The molecular bases of several genetic variants of BChE have been reported, such as the Atypical variant, fluoride-resistant variant, silent variant, K variant, J variant and C5 variant. In general, BChE polymorphisms have been shown to produce enzymes with varying levels of catalytic activity. Genetic variants of human butyrylcholinesterase were one of the first examples in the new field of pharmacogenetics when it was recognized that abnormal response to the succinylcholine was due to a mutated enzyme with low binding affinity. Beside that, variant of BChE has potential impact for Alzheimer disease patology


2021 ◽  
Vol 1 (6) ◽  
pp. 135-140
Author(s):  
Bharmatisna Anggaharsya Nugraha

Butyrylcholinesterase (BChE) is an enzyme found in plasma and many other parts of the body. It is enzyme that hydrolyses drugs containing ester bonds such as drugs acting at the neuromuscular junction (succinylcholine) and local anaesthetics (procaine). Examination of the gene for mutations or polymorphisms causing the observed biochemical phenotypes has isolated those responsible for all the most widely known variants. The molecular bases of several genetic variants of BChE have been reported, such as the Atypical variant, fluoride-resistant variant, silent variant, K variant, J variant and C5 variant. In general, BChE polymorphisms have been shown to produce enzymes with varying levels of catalytic activity. Genetic variants of human butyrylcholinesterase were one of the first examples in the new field of pharmacogenetics when it was recognized that abnormal response to the succinylcholine was due to a mutated enzyme with low binding affinity. Beside that, variant of BChE has potential impact for Alzheimer disease patology.


2005 ◽  
Vol 157-158 ◽  
pp. 400
Author(s):  
L.R. Mikami ◽  
R.L.R. Souza ◽  
E.A. Chautard-Freire-Maia ◽  
O. Lockridge

2020 ◽  
Vol 9 (8) ◽  
pp. 2510
Author(s):  
Katerina Pavelcova ◽  
Jana Bohata ◽  
Marketa Pavlikova ◽  
Eliska Bubenikova ◽  
Karel Pavelka ◽  
...  

Urate transporters, which are located in the kidneys, significantly affect the level of uric acid in the body. We looked at genetic variants of genes encoding the major reabsorption proteins GLUT9 (SLC2A9) and URAT1 (SLC22A12) and their association with hyperuricemia and gout. In a cohort of 250 individuals with primary hyperuricemia and gout, we used direct sequencing to examine the SLC22A12 and SLC2A9 genes. Identified variants were evaluated in relation to clinical data, biochemical parameters, metabolic syndrome criteria, and our previous analysis of the major secretory urate transporter ABCG2. We detected seven nonsynonymous variants of SLC2A9. There were no nonsynonymous variants of SLC22A12. Eleven variants of SLC2A9 and two variants of SLC22A12 were significantly more common in our cohort than in the European population (p = 0), while variants p.V282I and c.1002+78A>G had a low frequency in our cohort (p = 0). Since the association between variants and the level of uric acid was not demonstrated, the influence of variants on the development of hyperuricemia and gout should be evaluated with caution. However, consistent with the findings of other studies, our data suggest that p.V282I and c.1002+78A>G (SLC2A9) reduce the risk of gout, while p.N82N (SLC22A12) increases the risk.


1991 ◽  
Vol 11 (1) ◽  
pp. 79-89 ◽  
Author(s):  
Bert N. La Du ◽  
Cynthia F. Bartels ◽  
Christine P. Nogueira ◽  
Martine Arpagaus ◽  
Oksana Lockridge

2014 ◽  
Vol 19 (3) ◽  
pp. 459-486 ◽  
Author(s):  
Marco Fey ◽  
Aviv Melamud ◽  
Harald Müller

Compliance is a central concept in both the study and practice of international relations, and the body of literature is correspondingly extensive. Although justice has already been shown to play an important role in international negotiations, its potential impact on actors’ compliance behavior has not been sufficiently explored to date. We examine the relationship between the two concepts, and posit that actors’ perceived justice considerations with a regime influence their compliance behavior. To illustrate the importance of including justice considerations in the study of compliance, we investigate Germany’s behavior as a member of the Nuclear Non-Proliferation Treaty during the 1960–80s. The empirical illustration exemplifies how a member’s justice contentions, borne of an unjust regime, can lead to contested compliance and regime conflict. The case illuminates the need to broaden our understanding of compliance and its complexity in both conceptual and practical terms.


2001 ◽  
Vol 60 (1) ◽  
pp. 73-80 ◽  
Author(s):  
Wylie Burke ◽  
Giuseppina Imperatore ◽  
Michelle Reyes

Like most essential nutrients, Fe needs to be maintained in the body at a defined level for optimal health, with appropriate adaptation to varying Fe needs and supply. The primary mechanism for controlling Fe level is the regulation of Fe absorption. Several different proteins have been identified as contributors to the process. Despite a complex regulatory system, Fe disorders (both Fe deficiency and Fe overload) occur. Fe deficiency is a common problem worldwide, resulting from inadequate dietary Fe and blood loss. Complications include pre-term labour, developmental delay, and impaired work efficiency. No specific genetic syndromes causing isolated Fe deficiency have been described, but animal studies and clinical observations suggest that such a relationship may be a possibility. Conversely, the known causes of Fe overload are genetic. Fe overload is less common than Fe deficiency, but can result in serious medical complications, including cirrhosis, primary liver cancer, diabetes, cardiomyopathy and arthritis. The most common and best characterized syndrome of Fe overload is hereditary haemochromatosis (HHC), an autosomal recessive disorder. Mutations in the HFE protein cause HHC, but the clinical presentation is variable. Of particular interest is the factor that some HFE genotypes appear to be associated with protection from Fe deficiency. Other genetic variants in the regulatory pathway may influence the likelihood of Fe deficiency and Fe overload. Studies of genetic variants in HFE and other regulatory proteins provide important tools for studying the biological processes in Fe regulation. This work is likely to lead to new insights into Fe disorders and potentially to new therapeutic approaches. It will not be complete, however, until coordinated study of both genetic and nutritional factors is undertaken.


2020 ◽  
Author(s):  
Marion C. Bichet ◽  
Wai Hoe Chin ◽  
William Richards ◽  
Yu-Wei Lin ◽  
Laura Avellaneda-Franco ◽  
...  

AbstractFor over 100 years, bacteriophages have been known as viruses that infect bacteria. Yet it is becoming increasingly apparent that bacteriophages, or phages for short, have tropisms outside their bacterial hosts. During phage therapy, high doses of phages are directly administered and disseminated throughout the body, facilitating broad interactions with eukaryotic cells. Using live cell imaging across a range of cell lines we demonstrate that cell type plays a major role in phage internalisation and that smaller phages (< 100 nm) are internalised at higher rates. Uptake rates were validated under physiological shear stress conditions using a microfluidic device that mimics the shear stress to which endothelial cells are exposed to in the human body. Phages were found to rapidly adhere to eukaryotic cell layers, with adherent phages being subsequently internalised by macropinocytosis and functional phages accumulating and stably persisting intracellularly. Finally, we incorporate these results into an established pharmacokinetic model demonstrating the potential impact of phage accumulation by these cell layers, which represents a major sink for circulating phages in the body. Understanding these interactions will have important implications on innate immune responses, phage pharmacokinetics, and the efficacy of phage therapy.


2021 ◽  
Vol 11 (21) ◽  
pp. 9845
Author(s):  
Alexandra Mihailescu ◽  
Vlad Serafim ◽  
Corina Paul ◽  
Nicoleta Andreescu ◽  
Diana-Andreea Tiugan ◽  
...  

Polyunsaturated fatty acids are involved in a wide variety of biological functions. Linoleic acid and alpha-linolenic acid are two essential fatty acids that the body cannot synthesize. The conversion rates in the body depend on FADS2 genetic variants. Certain variations in this gene are directly responsible for the low levels and poor conversion efficiency of the delta-6 desaturase enzyme, resulting in low circulating levels of docosahexaenoic acid. In this study, we evaluated the impact of the rs526126 FADS2 gene polymorphism on fatty acid levels in a group of two hundred children (n = 95 males, n = 105 females) aged 7–18 years, with obesity defined by BMI > +2 SD. Fatty acid quantification was performed by LC-MS/MS while genotyping for genetic variants was performed using a custom-made hotspot sequencing panel of 55 SNPs. Our results suggest that rs526126 FADS2 gene polymorphism specifically impacts the plasma levels of free n-3 polyunsaturated fatty acids. Finally, the presence of the minor allele G of rs526126 could have beneficial effects, as it was associated with higher levels of free docosahexaenoic acid in plasma, especially in children with low n-3 intakes.


Sign in / Sign up

Export Citation Format

Share Document