scholarly journals Fatigue Behavior of Two Acrylic Denture Base Resins

2018 ◽  
Vol 55 (4) ◽  
pp. 567-570
Author(s):  
Catalin Dumitru ◽  
Anghel Cernescu ◽  
Ivana Eremici ◽  
Cristina Maria Bortun ◽  
Daniel Achiriloaiei

Acrylic resins based on polymetyl metacrylate are used in dental prosthetics as base for dentures. One of the major failure causes of dentures is the fatigue damage of the acrylic resins. These materials, in addition to mechanical behavior, also present a high risk of structural defects (voids, micro-cracks, residual monomer) that can significantly affect the fatigue behavior. In this paper, two commercial acrylic resins have been experimentally analyzed in terms of mechanical and fatigue behavior. Tensile constant amplitude fatigue tests with stress ratio R = 0 and frequency of 2 Hz have been carried out on samples of the two acrylic resins, prepared according to the manufacturer�s recommendations. The results revealed, besides the brittle fracture character, a similar fatigue behavior following a Weibull distribution. Also, through statistical processing of the results, the fatigue curve equations of the two analyzed materials were estimated for different levels of confidence.

Author(s):  
Diego F. S. Burgos ◽  
Luís F. S. Parise ◽  
Rafael G. Savioli ◽  
Gustavo H. B. Donato ◽  
Antonio P. Nascimento Filho ◽  
...  

This work presents an experimental investigation of the effects of plastic strain on the fatigue behavior of superduplex steel tubes. Fatigue tests using conventional axial loading and a resonant bending setup conducted on 15mm OD tubes made of SAF2507 superduplex steel provides S × N data upon which effects of different levels of plastic strain can be assessed. Despite the inherent scatter in the measured fatigue data, the experiments reveal consistent trends and relatively small effects of plastic strain on fatigue behavior of superduplex steel tubes.


2002 ◽  
Vol 4 (4) ◽  
pp. 197-201 ◽  
Author(s):  
Xingang Zhou ◽  
John Zhang

Micro-cracks in the vicinity of paste-aggregate interfaces and in the paste itself can be induced when concrete is exposed to elevated temperatures in the range 100°C-300°C. Although with increase of temperature, the strength of concrete becomes more and more influenced by the growing number of micro-cracks, the compressive strength of concrete at an elevated temperature lower than 300°C is almost the same of concrete at room temperature. Under repeated load, those microcracks caused by temperature would propagate, enlarge and become linked up, as a result, the fatigue behavior of concrete would decrease. In this paper, tests have been carried out to study the fatigue behavior of concrete after exposure to elevated temperatures of up to 300°C. Test results have shown that the reduction of fatigue strength of concrete is remarkable.


Metals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1083
Author(s):  
Christoph Breuner ◽  
Stefan Guth ◽  
Elias Gall ◽  
Radosław Swadźba ◽  
Jens Gibmeier ◽  
...  

One possibility to improve the fatigue life and strength of metallic materials is shot peening. However, at elevated temperatures, the induced residual stresses may relax. To investigate the influence of shot peening on high-temperature fatigue behavior, isothermal fatigue tests were conducted on shot-peened and untreated samples of gamma TiAl 48-2-2 at 750 °C in air. The shot-peened material was characterized using EBSD, microhardness, and residual stress analyses. Shot peening leads to a significant increase in surface hardness and high compressive residual stresses near the surface. Both effects may have a positive influence on lifetime. However, it also leads to surface notches and tensile residual stresses in the bulk material with a negative impact on cyclic lifetime. During fully reversed uniaxial tension-compression fatigue tests (R = −1) at a stress amplitude of 260 MPa, the positive effects dominate, and the fatigue lifetime increases. At a lower stress amplitude of 230 MPa, the negative effect of internal tensile residual stresses dominates, and the lifetime decreases. Shot peening leads to a transition from surface to volume crack initiation if the surface is not damaged by the shots.


2020 ◽  
Vol 11 (6) ◽  
pp. 861-873
Author(s):  
Ş. Hakan Atapek ◽  
Spiros Pantelakis ◽  
Şeyda Polat ◽  
Apostolos Chamos ◽  
Gülşah Aktaş Çelik

Purpose The purpose of this paper is to investigate the fatigue behavior of precipitation-strengthened Cu‒2.55Ni‒0.55Si alloy, modified by the addition of 0.25 Cr and 0.25 Zr (wt%), using mechanical and fractographical studies to reveal the effect of microstructural features on the fracture. Design/methodology/approach For strengthening, cast and hot forged alloy was subjected to solution annealing at 900°C for 60 min, followed by quenching in water and then aging at 490°C for 180 min. Precipitation-hardened alloy was exposed to fatigue tests at R=−1 and different stress levels. All fracture surfaces were examined within the frame of fractographical analysis. Findings Fine Ni-rich silicides responsible for the precipitation strengthening were observed within the matrix and their interactions with the dislocations at lower stress level resulted in localized shearing and fine striations. Although, by the addition of Cr and Zr, the matrix consisted of hard Ni, Zr-rich and Cr-rich silicides, these precipitates adversely affected the fatigue behavior acting as nucleation sites for cracks. Originality/value These findings contribute to the present knowledge by revealing the effect of microstructural features on the mechanical behavior of precipitation-hardened Cu‒Ni‒Si alloy modified by Cr and Zr addition.


Author(s):  
Claude Faidy

During the past 30 years many fatigue tests and fatigue analysis improvements have been developed in France in order to improve Codified Fatigue Rules of RCC-M and ASME Codes [1, 2]. This paper will present the major technical improvements to obtain reasonable evaluation of potential fatigue damage through EDF road map. Recently new results [3] confirm possible un-conservative fatigue material data: - High cycle fatigue in air for stainless steel, - Environmental effects on fatigue S-N curve for all materials - Fatigue Crack Growth law under PWR environment for stainless steel. In front of these new results, EDF has developed a “Fatigue Road Map” to improve the different steps of Codified fatigue rules. A periodic up-dating of proposed rules in the different French Codes: RCC-M, RCC-MRx and RSE-M with research of harmonization with other Code rules developed in USA, Japan and Germany in particular, will be done on a yearly basis. During the past 15 years, many results have been obtained through fatigue tests of stainless steel materials: - mean and design fatigue curve in air, - environmental effects on fatigue curves, - plasticity effects, - bi-axial load effects, - mean stress effects, - stress indices, - transferability from small to large specimen, - weld versus base metal. In parallel, many new developments have been made in non-nuclear pressure equipment industry: like the reference stress of ASME Section VIII or the structural stress of EN 13445. These methods are mainly well adapted to fatigue pressure cycling. In front of that situation, the French nuclear code organization needs to propose reliable rules for new design and for operating plants. Different proposals are under discussion and the status of the EDF proposals are presented in the paper. The consequences could be important for the utilities because a large part of the in-service inspection program is connected to some fatigue usage factor level between 0.5 and 1.


2016 ◽  
Vol 17 ◽  
pp. 14-30 ◽  
Author(s):  
Okechukwu P. Nwachukwu ◽  
Alexander V. Gridasov ◽  
Ekaterina A. Gridasova

This review looks into the state of gigacycle fatigue behavior of some structural materials used in engineering works. Particular attention is given to the use of ultrasonic fatigue testing machine (USF-2000) due to its important role in conducting gigacycle fatigue tests. Gigacycle fatigue behavior of most materials used for very long life engineering applications is reviewed.Gigacycle fatigue behavior of magnesium alloys, aluminum alloys, titanium alloys, spheroid graphite cast iron, steels and nickel alloys are reviewed together with the examination of the most common material defects that initiate gigacycle fatigue failures in these materials. In addition, the stage-by-stage fatigue crack developments in the gigacycle regime are reviewed. This review is concluded by suggesting the directions for future works in gigacycle fatigue.


Gerodontology ◽  
2021 ◽  
Author(s):  
Rodrigo Moreira Bringel Costa ◽  
Helena Sandrini Venante ◽  
Mariana Domingues Pordeus ◽  
Ana Paula Chappuis‐Chocano ◽  
Karin Hermana Neppelenbroek ◽  
...  

Author(s):  
Marina C. Vasco ◽  
Panagiota Polydoropoulou ◽  
Apostolos N. Chamos ◽  
Spiros G. Pantelakis

In a series of applications, steel reinforced concrete structures are subjected to fatigue loads during their service life, what in most cases happens in corrosive environments. Surface treatments have been proved to represent proper processes in order to improve both fatigue and corrosion resistances. In this work, the effect of corrosion and sandblasting on the high cycle fatigue behavior reinforcing steel bars is investigated. The investigated material is the reinforcing steel bar of technical class B500C, of nominal diameter of 12 mm. Steel bars specimens were first exposed to corrosion in alternate salt spray environment for 30 and 60 days and subjected to both tensile and fatigue tests. Then, a series of specimens were subjected to common sandblasting, corroded and mechanically tested. Metallographic investigation and corrosion damage evaluation regarding mass loss and martensitic area reduction were performed. Tensile tests were conducted after each corrosion exposure period prior to the fatigue tests. Fatigue tests were performed at a stress ratio, R, of 0.1 and loading frequency of 20 Hz. All fatigue tests series as well as tensile test were also performed for as received steel bars to obtain the reference behavior. The results have shown that sandblasting hardly affects the tensile behavior of the uncorroded material. The effect of sandblasting on the tensile behavior of pre-corroded specimens seems to be also limited. On the other hand, fatigue results indicate an improved fatigue behavior for the sandblasted material after 60 days of corrosion exposure. Martensitic area reductions, mass loss and depth of the pits were significantly smaller for the case of sandblasted materials, which confirms an increased corrosion resistance.


PCI Journal ◽  
2022 ◽  
Vol 67 (1) ◽  
Author(s):  
Jörn Remitz ◽  
Martin Empelmann

Pretensioned concrete beams are widely used as bridge girders for simply supported bridges. Understanding the fatigue behavior of such beams is very important for design and construction to prevent fatigue failure. The fatigue behavior of pretensioned concrete beams is mainly influenced by the fatigue of the prestressing strands. The evaluation of previous test results from the literature indicated a reduced fatigue life in the long-life region compared with current design methods and specifications. Therefore, nine additional high-cycle fatigue tests were conducted on pretensioned concrete beams with strand stress ranges of about 100 MPa (14.5 ksi). The test results confirmed that current design methods and specifications overestimate the fatigue life of embedded strands in pretensioned concrete beams.


Sign in / Sign up

Export Citation Format

Share Document