scholarly journals The Static Behavior of a Ship Deck Panel Made of Composite Materials

2022 ◽  
Vol 58 (4) ◽  
pp. 147-157
Author(s):  
Elena-Felicia Beznea ◽  
Nicusor Baroiu ◽  
Ionel Chirica

A study on the static analysis of a naval panel made of composite sandwich materials is presented. By using FEM, the modeling of a naval floor with a length of 5 m and a width of 2.5 m is performed. Two distinct cases, have been performed: the first model consists of the plate and stiffeners made of steel and the second model concerns a panel made of composite material sandwich type steel / SANFoam103 / steel, and the stiffeners made of steel. A parametric study has been performed. The thickness of the steel faces have 6 mm, and for the core of SANFoam have been selected the thicknesses 5 mm, 10 mm, 20 mm, 40 mm.

2019 ◽  
Vol 12 (2) ◽  
pp. 53-60
Author(s):  
Kharis Abdullah ◽  
Achmad Zubaydi ◽  
Agung Budipriyanto

The development of technology in the field of materials and construction produces many innovations, one of them is sandwich plate system. Sandwich plate system is a material formed by two different materials into one layer. Sandwich plate system consists of face that from plate and core form composite. Clam shells are one of the waste materials that can be used as filler on the core. The composite material that use as a core is a mixture of clam shells powder as filler and resin as a matrix. The combination of clam shells powder and resin, produces strong composite materials. Sandwich plate system using core from clam shelsl powder and resin produce good strength. The material using 20% clam shells powder as filler of the resin weight has maximum stress 53.32 N/mm2 on the deck and 53.20 N/mm2 for 30% of filler by weight of the resin. The maximum stress value is still below the permission stress required by the class rule.   


2020 ◽  
Vol 12 ◽  
Author(s):  
Alexandra Atyaksheva ◽  
Yermek Sarsikeyev ◽  
Anastasia Atyaksheva ◽  
Olga Galtseva ◽  
Alexander Rogachev

Aims:: The main goals of this research are exploration of energy-efficient building materials when replacing natural materials with industrial waste and development of the theory and practice of obtaining light and ultra-light gravel materials based on mineral binders and waste dump ash and slag mixtures of hydraulic removal. Background.: Experimental data on the conditions of formation of gravel materials containing hollow aluminum and silica microsphere with opportunity of receipt of optimum structure and properties depending on humidity with the using of various binders are presented in this article. This article dwells on the scientific study of opportunity physical-mechanical properties of composite materials optimization are considered. Objective.: Composite material contains hollow aluminum and silica microsphere. Method.: The study is based on the application of the method of separation of power and heat engineering functions. The method is based on the use of the factor structure optimality, which takes into account the primary and secondary stress fields of the structural gravel material. This indicates the possibility of obtaining gravel material with the most uniform distribution of nano - and microparticles in the gravel material and the formation of stable matrices with minimization of stress concentrations. Experiments show that the thickness of the cement shell, which performs power functions, is directly related to the size of the raw granules. At the same time, the thickness of the cement crust, regardless of the type of binder, with increasing moisture content has a higher rate of formation for granules of larger diameter. Results.: The conditions for the formation of gravel composite materials containing a hollow aluminosilicate microsphere are studied. The optimal structure and properties of the gravel composite material were obtained. The dependence of the strength function on humidity and the type of binder has been investigated. The optimal size and shape of binary form of gravel material containing a hollow aluminosilicate microsphere with a minimum thickness of a cement shell and a maximum strength function was obtained. Conclusion.: Received structure allows to separate power and heat engineering functions in material and to minimize the content of the excited environment centers.


Author(s):  
Jiyuan Fan ◽  
Chengkun Xiao ◽  
Jinlin Mei ◽  
Cong Liu ◽  
Aijun Duan ◽  
...  

CoMo series catalysts based on ZSM-22/PHTS (ZP) composite materials with different SiO2/Al2O3 molar ratios were prepared via the impregnation method. The properties of the ZP material and the corresponding catalysts...


Sensors ◽  
2020 ◽  
Vol 21 (1) ◽  
pp. 145
Author(s):  
Lesław Kyzioł ◽  
Katarzyna Panasiuk ◽  
Grzegorz Hajdukiewicz ◽  
Krzysztof Dudzik

Due to the unique properties of polymer composites, these materials are used in many industries, including shipbuilding (hulls of boats, yachts, motorboats, cutters, ship and cooling doors, pontoons and floats, torpedo tubes and missiles, protective shields, antenna masts, radar shields, and antennas, etc.). Modern measurement methods and tools allow to determine the properties of the composite material, already during its design. The article presents the use of the method of acoustic emission and Kolmogorov-Sinai (K-S) metric entropy to determine the mechanical properties of composites. The tested materials were polyester-glass laminate without additives and with a 10% content of polyester-glass waste. The changes taking place in the composite material during loading were visualized using a piezoelectric sensor used in the acoustic emission method. Thanks to the analysis of the RMS parameter (root mean square of the acoustic emission signal), it is possible to determine the range of stresses at which significant changes occur in the material in terms of its use as a construction material. In the K-S entropy method, an important measuring tool is the extensometer, namely the displacement sensor built into it. The results obtained during the static tensile test with the use of an extensometer allow them to be used to calculate the K-S metric entropy. Many materials, including composite materials, do not have a yield point. In principle, there are no methods for determining the transition of a material from elastic to plastic phase. The authors showed that, with the use of a modern testing machine and very high-quality instrumentation to record measurement data using the Kolmogorov-Sinai (K-S) metric entropy method and the acoustic emission (AE) method, it is possible to determine the material transition from elastic to plastic phase. Determining the yield strength of composite materials is extremely important information when designing a structure.


Aerospace ◽  
2021 ◽  
Vol 8 (7) ◽  
pp. 178
Author(s):  
Valerio Acanfora ◽  
Roberto Petillo ◽  
Salvatore Incognito ◽  
Gerardo Mario Mirra ◽  
Aniello Riccio

This work provides a feasibility and effectiveness analysis, through numerical investigation, of metal replacement of primary components with composite material for an executive aircraft wing. In particular, benefits and disadvantages of replacing metal, usually adopted to manufacture this structural component, with composite material are explored. To accomplish this task, a detailed FEM numerical model of the composite aircraft wing was deployed by taking into account process constraints related to Liquid Resin Infusion, which was selected as the preferred manufacturing technique to fabricate the wing. We obtained a geometric and material layup definition for the CFRP components of the wing, which demonstrated that the replacement of the metal elements with composite materials did not affect the structural performance and can guarantee a substantial advantage for the structure in terms of weight reduction when compared to the equivalent metallic configuration, even for existing executive wing configurations.


2012 ◽  
Vol 496 ◽  
pp. 281-284
Author(s):  
Wen Wen Liu ◽  
Zhi Wang ◽  
Yun Hai Du ◽  
Xian Zhong Xu ◽  
Da Quan Liu ◽  
...  

An improved accurate speckle projection method is used for study the mechanical properties of the composite material film in the paper. A system for deformation measurement is developed with the telecentric lenses, in which such conventional lens’ disadvantages such as lens distortion and perspective error will be diminished. Experiments are performed to validate the availability and reliability of the calibration method. The system can also be used to measure the dynamic deformation and then results are also given.


2010 ◽  
Vol 97-101 ◽  
pp. 1223-1226
Author(s):  
Jun Lin Li ◽  
Shao Qin Zhang

The problem of orthotropic composite materials semi-infinite interfacial crack was studied, by constructing new stress functions and employing the method of composite material complex. In the case that the secular equations’ discriminates the and theoretical solutions to the stress fields and the displacement fields near semi-infinite interface crack tip without oscillation and inter-embedding between the interfaces of the crack are obtained, a comparison with finite element example was done to verify the correction of theoretical solution.


2014 ◽  
Vol 918 ◽  
pp. 21-26
Author(s):  
Chen Kang Huang ◽  
Yun Ching Leong

In this study, the transport theorem of phonons and electrons is utilized to create a model to predict the thermal conductivity of composite materials. By observing or assuming the dopant displacement in the matrix, a physical model between dopant and matrix can be built, and the composite material can be divided into several regions. In each region, the phonon or electron scattering caused by boundaries, impurities, or U-processes was taken into account to calculate the thermal conductivity. The model is then used to predict the composite thermal conductivity for several composite materials. It shows a pretty good agreement with previous studies in literatures. Based on the model, some discussions about dopant size and volume fraction are also made.


Sign in / Sign up

Export Citation Format

Share Document