scholarly journals Microwave Treated Gardenia Jasminoides Leaves for Adsorptive Removal of Direct Red-28 Dye in Environmental Benign Way

2019 ◽  
Vol 69 (12) ◽  
pp. 3445-3450
Author(s):  
Rabia Rehman ◽  
Farah Kanwal ◽  
Liviu Mitu

In this work, microwave treated Gardenia jasminoides leaves (MTGL) were employed to remove Direct Red-28 (DR) dye from aqueous medium. Most of DR dye contents removed within 30 minutes at pH 2 and 350 ppm dye concentration by 0.02 mg MTGL. Maximum dye adsorbed by MTGL (88.50 mg/g) was approximately triple than non treated simple Gardenia jasminoides leaves (34.13 mg/g). Adsorption modelling of equilibrium data indicated that removal of DR dye by MTGL followed Langmuir, Freundlich and pseudo-second order kinetic models, having exothermic nature. Desorption studies indicated the reusability of MTGL on larger scale. So it is clear that Gardenia jasminoide leaves can be used on larger scale for anionic dye removal after treatment with formalin in efficient manner.

2017 ◽  
Vol 23 (4) ◽  
pp. 447-456
Author(s):  
Rahim Shojaat ◽  
Afzal Karimi ◽  
Naghi Saadatjoo ◽  
Soheil Aber

In the present study, GOx/MnFe2O4/calcium alginate nano-composite was prepared by the trapping enzyme/nanoparticles in calcium alginate. The prepared absorbent was applied for decolorization of artificial dye wastewater of acid red 14 (AR14) by heterogeneous bio-Fenton system. Kinetic and isotherm studies were carried out. The decolorization of acid red 14 followed the Michaelis- Menten, pseudo-first order and pseudo-second order kinetic models. Good correlation coefficients were obtained by fitting the experimental data to Michaelis- Menten and pseudo-second order kinetic models. The adsorption isotherms were described by Langmuir, Freundlich and Temkin isotherms. Among the three isotherm models, the Freundlich model was fitted with the equilibrium data obtained from adsorption of AR14 onto MnFe2O4/calcium alginate; while Temkin isotherm gave the best correlation for adsorption on MnFe2O4 nanoparticles. The effect of various parameters such as initial pH of solution, initial dye concentration, and contact time on the adsorption of AR14 on MnFe2O4 and MnFe2O4/ /calcium alginate as well as dye enzymatic decomposition was studied. The decolorization of AR14 with initial concentration of 10 mg.L?1 by using GOx/ /MnFe2O4/calcium alginate was 60.17%.


2013 ◽  
Vol 295-298 ◽  
pp. 1154-1160 ◽  
Author(s):  
Guo Zhi Deng ◽  
Xue Yuan Wang ◽  
Xian Yang Shi ◽  
Qian Qian Hong

The objective of this paper is to investigate the feasibility of phenol adsorption from aqueous solution by Pinus massoniana biochar. Adsorption conditions, including contact time, initial phenol concentration, adsorbent dosage, strength of salt ions and pH, have been investigated by batch experiments. Equilibrium can be reached in 24 h for phenol from 50 to 250 mg• L-1. The optimum pH value for this kind of biochar is 5.0. The amount of phenol adsorbed per unit decreases with the increase in adsorbent dosage. The existence of salt ions makes negligible influence on the equilibrium adsorption capacity. The experimental data is analyzed by the Freundlich and Langmuir isotherm models. Equilibrium data fits well to the Freundlich model. Adsorption kinetics models are deduced and the pseudo-second-order kinetic model provides a good correlation for the adsorbent process. The results show that the Pinus massoniana biochar can be utilized as an effective adsorption material for the removal of phenol from aqueous solution.


Author(s):  
Mohamed Nasser Sahmoune ◽  
Krim Louhab ◽  
Aissa Boukhiar

Dead streptomyces rimosus was found to be an effective biosorbent for the removal of chromium from industrial tanning effluents. A sorption level of 65 mg/g was observed at pH 4.8 while the precipitation effect augmented this value at a higher pH range. Chromium desorption increased with decreasing desorption agents pH (including HCl and H2SO4) to a maximum value of 95% at approximately zero pH. The biosorption data of trivalent chromium by streptomyces rimosus has been used for kinetic studies based on fractional power, Elovich, pseudo-first order and pseudo-second order rate expressions. The time-dependent Cr (III) biosorption data were well-described by a pseudo-second-order kinetic model. The intraparticle diffusion is not the rate-limiting step for the whole reaction. It was found that the biosorption equilibrium data fit well with the Langmuir model.


2021 ◽  
Vol 10 (1) ◽  
pp. 59-66
Author(s):  
Son Le Lam ◽  
Phu Nguyen Vinh ◽  
Hieu Le Trung ◽  
Tan Le Thua ◽  
Nhan Dang Thi Thanh ◽  
...  

Glucomannan/graphene oxide (GM/GO) hydrogel was synthesized by using calcium hydroxide as the crosslinker. The synthesized material was characterized by using IR, XRD, SEM, EDX and RAMAN technology. The composite hydrogel was used for removal of organic dyes from aqueous solution. The results showed that the GM/GO hydrogel had a porous structure and a high adsorption capacity toward methylene blue (MB). The pseudo-second-order kinetic model could fit the rate equation of MB adsorption onto the GM/GO hydrogel. The adsorption of MB onto GM/GO hydrogel was a spontaneous process. In addition, the equilibrium adsorption isotherm data indicated that equilibrium data were fitted to the Langmuir isotherm and the maximum dye adsorption capacity was 198,69 mg.g-1. Moreover, the hydrogel was stable and easily recovered and adsorption capacity was around 97% of the initial saturation adsorption capacity after being used five times.


2013 ◽  
Vol 78 (6) ◽  
pp. 811-826 ◽  
Author(s):  
M.H. Morcali ◽  
B. Zeytuncu ◽  
O. Yucel

Rice hull, a biomass waste product, and Lewatit TP 214, a thiosemicarbazide sorbent, were investigated as adsorbents for the adsorption of platinum (IV) ions from synthetically prepared dilute chloroplatinic acid solutions. The rice hull was characterized by Attenuated Total Reflection-Fourier transform infrared spectroscopy (ATR-FTIR). The effects of the different adsorption parameters, sorbent dosage, contact time, temperature and pH of solution on adsorption percentage were studied in detail on a batch sorption. The adsorption equilibrium data were best fitted with the Langmuir isotherm model. The maximum monolayer adsorption capacities, Qmax, at 25?C were found to be 42.02 and 33.22 mg g-1 for the rice hull and Lewatit TP 214, respectively. Thermodynamic calculations using the measured ?H?, ?S? and ?G? values indicate that the adsorption process was spontaneous and exothermic. The pseudo-first-order and pseudo-second-order rate equations were investigated; the adsorption of platinum ions for both sorbents was found to be described by the pseudo-second-order kinetic model. The kinetic rate, k2, using 30 mg sorbent at 25?C was found to be 0.0289 and 0.0039 g min-1 mg-1 for the rice hull and Lewatit TP 214, respectively. The results indicated that the rice hull can be effectively used for the removal of platinum from aqueous solution.


2019 ◽  
Vol 55 (2) ◽  
pp. 132-144 ◽  
Author(s):  
Amir Hossein Mahvi ◽  
Arash Dalvand

Abstract In this research, the adsorption of the Direct Red 23 dye from synthetic textile wastewater using nanoclay was studied in a batch system. The properties of nanoclay were investigated by scanning electron microscope, Fourier transform infrared, and EDX analysis. The specific surface area of the nanoclay was determined using Sear's method. The results revealed that with increasing adsorbent dose and contact time and decreasing pH, ionic strength, and adsorbate concentration, dye removal efficiency has increased. Nanoclay could remove 99.4% dye from the solution containing 50 mg/L dye at 30 min. The results indicated that dye removal followed pseudo-second-order kinetic (R2 > 0.99) and the Langmuir isotherm. According to the findings, nanoclay is an effective adsorbent for direct dye removal from wastewater.


2011 ◽  
Vol 8 (s1) ◽  
pp. S363-S371 ◽  
Author(s):  
C. Theivarasu ◽  
S. Mylsamy

The removal of malachite green (MG) by cocoa (Theobroma cacao) shell activated carbon (CSAC) was investigated in present study. Adsorption studies were performed by batch experiments as a function of process parameters such as initial pH, contact time, initial concentration and adsorbent dose. A comparison of kinetic models applied to the adsorption of MG on CSAC was evaluated for the pseudo-first order and pseudo-second order kinetic models. Results showed that the pseudo-second order kinetic model was found to correlate the experimental data well. The experimental equilibrium adsorption data was represented with Langmuir, Freundlich, Tempkin, Dubinin-Radushkevich and Flory-Huggins isotherms. The experimental data obtained in the present study indicated that activated carbon developed from cocoa shell can be attractive options for dye removal from waste water.


2017 ◽  
Vol 75 (10) ◽  
pp. 2316-2321 ◽  
Author(s):  
Hao Peng ◽  
Zuohua Liu ◽  
Changyuan Tao

Melamine, possessing three free amino groups and three aromatic nitrogen atoms in its molecule, has great potential as an adsorbent for metal ions. We investigated three impact factors of the adsorption process: the initial pH of the vanadium solution, contact time and reaction temperature. The adsorption kinetics could be accurately described by the pseudo-second-order kinetic model. Langmuir and Freundlich models fitted well with the experimental equilibrium data, and the maximal adsorption capacity was found to be 1,428.57 mg vanadium/g melamine, and the Freundlich model showed the adsorption is privilege type.


2013 ◽  
Vol 69 (1) ◽  
pp. 147-155 ◽  
Author(s):  
Babak Kakavandi ◽  
Ali Esrafili ◽  
Anoushiravan Mohseni-Bandpi ◽  
Ahmad Jonidi Jafari ◽  
Roshanak Rezaei Kalantary

In the present study, powder activated carbon (PAC) combined with Fe3O4 magnetite nanoparticles (MNPs) were used for the preparation of magnetic composites (MNPs-PAC), which was used as an adsorbent for amoxicillin (AMX) removal. The properties of magnetic activated carbon were characterized by scanning electron microscopy, transmission electron microscopy, X-ray diffraction, Brunaeur, Emmett and Teller and vibrating sample magnetometer. The operational factors affecting adsorption such as pH, contact time, adsorbent dosage, initial AMX concentration and temperature were studied in detail. The high surface area and saturation magnetization for the synthesized adsorbent were found to be 671.2 m2/g and 6.94 emu/g, respectively. The equilibrium time of the adsorption process was 90 min. Studies of adsorption equilibrium and kinetic models revealed that the adsorption of AMX onto MNPs-PAC followed Freundlich and Langmuir isotherms and pseudo-second-order kinetic models. The calculated values of the thermodynamic parameters, such as ΔG°, ΔH° and ΔS° demonstrated that the AMX adsorption was endothermic and spontaneous in nature. It could be concluded that MNPs-PAC have a great potential for antibiotic removal from aquatic media.


2013 ◽  
Vol 11 (1) ◽  
pp. 501-509
Author(s):  
Xueyong Zhou ◽  
Huifen Liu ◽  
Xianzhi Lu ◽  
Lili Shi ◽  
Jianchao Hao

Abstract Genetically modified crops, which produce insecticidal toxins from Bacillus thuringiensis (Bt), release the toxins into soils. Although the phenomena of persistence and degradation of Bt toxins have been documented, the effect of heavy metals on the fate of these toxins in soil has not yet been elucidated. The effect of Pb(II) on the adsorption behaviors of Bt toxin in brown and red soil was investigated. With the increase of Pb(II) concentration, the adsorption of Bt toxin in brown and red soil increased. The Langmuir, Freundlich and Dubinin–Radushkevich (D–R) isotherm models gave better fitting to the experimental equilibrium data. Values of KL, KF and n increased but RL decreased with the increase of Pb(II) concentration, showing that the Pb(II) promoted the adsorption of Bt toxin in soils. The mean free energy of adsorption (E) ranged from 10.43 to 16.44 kJ mol−1 may correspond to a chemical ion-exchange mechanism. Three kinds of kinetic models, the pseudo-first-order, pseudo-second-order and intraparticle diffusion model, were used to test the experimental data. The results showed that the adsorption of Bt toxin by brown and red soil followed the pseudo-second-order kinetic model. The addition of Pb(II) during the adsorption led to a decrease of the desorption of Bt toxin from soils, indicating that the residual risk of Bt toxin may become larger if soil is polluted by lead.


Sign in / Sign up

Export Citation Format

Share Document