scholarly journals Antibacterial potential of essential oils against planktonic and sessile cells of Escherichia coli isolated from diarrhea cases in swine

Author(s):  
Franciana Aparecida Volpato Bellaver ◽  
◽  
Anildo Cunha Junior ◽  
Thais Carla Dal Bello ◽  
Ana Julia Longo Neis ◽  
...  

Escherichia coli is a pathogen associated with infections in piglets in the post-weaning phase, its pathogenicity is related to the animal's susceptibility to bacterial enterotoxins. The objective of the present study was to determine the EOs activity against E. coli strain, in the form planktonic and sessile. Although the Disc-Diffusion tests to determine the Minimum Inhibitory Concentration, do not fully corroborate with the other analyzes of this study, it was noticed bacteria inhibition. The EOs were prepared at 0.4%, 0.8% and 1.0% for tests. The tested EOs were effective against E. coli planktonic cells (p<0.05). As for the sessile cells, the most significant result was inhibition and 100% sessile cells at the concentration of 1.0% of Cymbopogon citratus EO. Although there was resistance in some treatments, the tested EOs demonstrated inhibition capacity, constituting promising alternatives for the control of E. coli, especially of planktonic cells.

2006 ◽  
Vol 72 (5) ◽  
pp. 3336-3342 ◽  
Author(s):  
Bong Hyun Sung ◽  
Choong Hoon Lee ◽  
Byung Jo Yu ◽  
Jun Hyoung Lee ◽  
Ju Young Lee ◽  
...  

ABSTRACT Bacteria form biofilms by adhering to biotic or abiotic surfaces. This phenomenon causes several problems, including a reduction in the transport of mass and heat, an increase in resistance to antibiotics, and a shortening of the lifetimes of modules in bioindustrial fermentors. To overcome these difficulties, we created a biofilm production-deficient Escherichia coli strain, BD123, by deleting genes involved in curli biosynthesis and assembly, Δ(csgG-csgC); colanic acid biosynthesis and assembly, Δ(wcaL-wza); and type I pilus biosynthesis, Δ(fimB-fimH). E. coli BD123 remained mostly in the form of planktonic cells under the conditions tested and became more sensitive to the antibiotics streptomycin and rifampin than the wild-type E. coli MG1655: the growth of BD123 was inhibited by one-fourth of the concentrations needed to inhibit MG1655. In addition, the transformation efficiency of BD123 was about 20 times higher than that of MG1655, and the production and secretion of recombinant proteins were ∼16% and ∼25% greater, respectively, with BD123 than with MG1655. These results indicate that the newly created biofilm production-deficient strain of E. coli displays several key properties that substantially enhance its utility in the biotechnology arena.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Abdulkader Masri ◽  
Naveed Ahmed Khan ◽  
Muhammad Zarul Hanifah Md Zoqratt ◽  
Qasim Ayub ◽  
Ayaz Anwar ◽  
...  

Abstract Backgrounds Escherichia coli K1 causes neonatal meningitis. Transcriptome studies are indispensable to comprehend the pathology and biology of these bacteria. Recently, we showed that nanoparticles loaded with Hesperidin are potential novel antibacterial agents against E. coli K1. Here, bacteria were treated with and without Hesperidin conjugated with silver nanoparticles, and silver alone, and 50% minimum inhibitory concentration was determined. Differential gene expression analysis using RNA-seq, was performed using Degust software and a set of genes involved in cell stress response and metabolism were selected for the study. Results 50% minimum inhibitory concentration with silver-conjugated Hesperidin was achieved with 0.5 μg/ml of Hesperidin conjugated with silver nanoparticles at 1 h. Differential genetic analysis revealed the expression of 122 genes (≥ 2-log FC, P< 0.01) in both E. coli K1 treated with Hesperidin conjugated silver nanoparticles and E. coli K1 treated with silver alone, compared to untreated E. coli K1. Of note, the expression levels of cation efflux genes (cusA and copA) and translocation of ions, across the membrane genes (rsxB) were found to increase 2.6, 3.1, and 3.3- log FC, respectively. Significant regulation was observed for metabolic genes and several genes involved in the coordination of flagella. Conclusions The antibacterial mechanism of nanoparticles maybe due to disruption of the cell membrane, oxidative stress, and metabolism in E. coli K1. Further studies will lead to a better understanding of the genetic mechanisms underlying treatment with nanoparticles and identification of much needed novel antimicrobial drug candidates.


Pathogens ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 549
Author(s):  
Julia Ittensohn ◽  
Jacqueline Hemberger ◽  
Hannah Griffiths ◽  
Maren Keller ◽  
Simone Albrecht ◽  
...  

The uropathogenic Escherichia coli strain CFT073 causes kidney abscesses in mice Toll/interleukin-1 receptor domain-containing protein C (TcpC) dependently and the corresponding gene is present in around 40% of E. coli isolates of pyelonephritis patients. It impairs the Toll-like receptor (TLR) signaling chain and the NACHT leucin-rich repeat PYD protein 3 inflammasome (NLRP3) by binding to TLR4 and myeloid differentiation factor 88 as well as to NLRP3 and caspase-1, respectively. Overexpression of the tcpC gene stopped replication of CFT073. Overexpression of several tcpC-truncation constructs revealed a transmembrane region, while its TIR domain induced filamentous bacteria. Based on these observations, we hypothesized that tcpC expression is presumably tightly controlled. We tested two putative promoters designated P1 and P2 located at 5′ of the gene c2397 and 5′ of the tcpC gene (c2398), respectively, which may form an operon. High pH and increasing glucose concentrations stimulated a P2 reporter construct that was considerably stronger than a P1 reporter construct, while increasing FeSO4 concentrations suppressed their activity. Human urine activated P2, demonstrating that tcpC might be induced in the urinary tract of infected patients. We conclude that P2, consisting of a 240 bp region 5′ of the tcpC gene, represents the major regulator of tcpC expression.


1993 ◽  
Vol 21 (2) ◽  
pp. 151-155
Author(s):  
Gustaw Kerszman

The toxicity of the first ten MEIC chemicals to Escherichia coli and Bacillus subtilis was examined. Nine of the chemicals were toxic to the bacteria, with the minimal inhibitory concentration (MIC) ranging from 10-3 to 4.4M. The sensitivities of both organisms were similar, but the effect on E. coli was often bactericidal, while it was bacteriostatic for B. subtilis. Digoxin was not detectably toxic to either bacterial species. Amitriptyline and FeSO4 were relatively less toxic to the bacteria than to human cells. For seven chemicals, a highly significant linear regression was established between log MIC in bacteria and log of blood concentration, giving lethal and moderate/mild toxicity in humans, as well as with toxicity to human lymphocytes.


2020 ◽  
Vol 8 (11) ◽  
pp. 1662
Author(s):  
Zachary R. Stromberg ◽  
Rick E. Masonbrink ◽  
Melha Mellata

Foodborne pathogens are a public health threat globally. Shiga toxin-producing Escherichia coli (STEC), particularly O26, O111, and O157 STEC, are often associated with foodborne illness in humans. To create effective preharvest interventions, it is critical to understand which factors STEC strains use to colonize the gastrointestinal tract of cattle, which serves as the reservoir for these pathogens. Several colonization factors are known, but little is understood about initial STEC colonization factors. Our objective was to identify these factors via contrasting gene expression between nonpathogenic E. coli and STEC. Colonic explants were inoculated with nonpathogenic E. coli strain MG1655 or STEC strains (O26, O111, or O157), bacterial colonization levels were determined, and RNA was isolated and sequenced. STEC strains adhered to colonic explants at numerically but not significantly higher levels compared to MG1655. After incubation with colonic explants, flagellin (fliC) was upregulated (log2 fold-change = 4.0, p < 0.0001) in O157 STEC, and collectively, Lon protease (lon) was upregulated (log2 fold-change = 3.6, p = 0.0009) in STEC strains compared to MG1655. These results demonstrate that H7 flagellum and Lon protease may play roles in early colonization and could be potential targets to reduce colonization in cattle.


Pathogens ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. 811
Author(s):  
Md. Akil Hossain ◽  
Hae-Chul Park ◽  
Sung-Won Park ◽  
Seung-Chun Park ◽  
Min-Goo Seo ◽  
...  

Pathogenic Escherichia coli (E. coli)-associated infections are becoming difficult to treat because of the rapid emergence of antibiotic-resistant strains. Novel approaches are required to prevent the progression of resistance and to extend the lifespan of existing antibiotics. This study was designed to improve the effectiveness of traditional antibiotics against E. coli using a combination of the gallic acid (GA), hamamelitannin, epicatechin gallate, epigallocatechin, and epicatechin. The fractional inhibitory concentration index (FICI) of each of the phenolic compound-antibiotic combinations against E. coli was ascertained. Considering the clinical significance and FICI, two combinations (hamamelitannin-erythromycin and GA-ampicillin) were evaluated for their impact on certain virulence factors of E. coli. Finally, the effects of hamamelitannin and GA on Rattus norvegicus (IEC-6) cell viability were investigated. The FICIs of the antibacterial combinations against E. coli were 0.281–1.008. The GA-ampicillin and hamamelitannin-erythromycin combinations more effectively prohibited the growth, biofilm viability, and swim and swarm motilities of E. coli than individual antibiotics. The concentration of hamamelitannin and GA required to reduce viability by 50% (IC50) in IEC-6 cells was 988.54 μM and 564.55 μM, correspondingly. GA-ampicillin and hamamelitannin-erythromycin may be potent combinations and promising candidates for eradicating pathogenic E. coli in humans and animals.


2015 ◽  
Vol 45 (7) ◽  
pp. 1249-1255 ◽  
Author(s):  
Daiane Carvalho ◽  
Fabrine Finkler ◽  
Tiela Trapp Grassotti ◽  
Hiran Castagnino Kunert Filho ◽  
Francisco Esmaile de Sales Lima ◽  
...  

The study aimed to evaluate the antimicrobial susceptibility of 109 samples of Escherichia coli (E. coli) of environmental origin and to characterize these isolates according to the degree of pathogenicity in vivo, verifying a possible relationship between this variable and susceptibility to the active principles tested. The isolates were subjected to disc diffusion test to 14 antibiotics. From 16.5% to 90% of the samples were sensitive; 1 - 28.5% showed intermediate degree of susceptibility and between 9 to 78% of E. coli analyzed were resistant. The highest resistance percentages were seen in the class of quinolones and tetracyclines (&gt;75%), and for sensitivity in the class of amphenicols (68.8%). By inoculating 1- day - old chicks, the isolates were classified as highly pathogenic (2.7%), intermediate (10.1%), low (42.2%) and apathogenic (45%). It was observed a wide variation in the susceptibility profile of isolates in relation to antimicrobials. It was also found that most of the samples had pathogenic potential (55%), thus being considered as APEC (avian pathogenic E. coli). No relationship between pathogenicity and antimicrobial susceptibility (P≤0.05) was observed.


2011 ◽  
Vol 11 ◽  
pp. 2237-2242 ◽  
Author(s):  
S. C. Sati ◽  
Savita Joshi

The antibacterial activity of methanol, ethanol, chloroform, and hexane extracts of the leaves of Himalayan gymnospermous plantGinkgo bilobaL. was assessed against five animal and plant pathogenic strains (Agrobacterium tumefaciens, Bacillus subtilis, Escherichia coli, Erwinia chrysanthemi, and Xanthomonas phaseoli) employing disc-diffusion and broth-dilution assays. The methanol extract showed the highest activity (zone of inhibition of 15–21 mm) followed by ethanol (14–19 mm), chloroform (15–20 mm), and hexane (14–19 mm) extracts at 250 μg/mL. A minimum inhibitory concentration (MIC) of 7.8 μg/mL was found for the methanol extract against most of the pathogens tested.


2021 ◽  
Author(s):  
M. N. Gorbunova ◽  
L.M. Lemkina ◽  
A.I. Nechaev

Abstract New silver nanocomposites based on polysulfones of 2,2-diallyl-1,1,3,3-tetraethylguanidiniumchloride [poly(AGC-SO2)], tris(diethylamino)diallylaminophosphonium tetrafluoroborate [poly(DAAP-BF4-SO2)] and chloride [poly(DAAP-Cl-SO2)] have been developed. UV- spectroscopy, SEM and XRD techniques were used to characterize the formation of silver nanoparticles in copolymers. Antibacterial action of new silver nanocomposites on S. epidermidis 33 and Escherichia coli (planktonic cells and biofilms) was studied. The silver nanocomposites strongly inhibited biofilms formation of S. epidermidis 33 and Escherichia coli. The silver nanocomposites based on phosphonium polysulfones have a significant cytotoxic activity against RD and MS line cells.


2020 ◽  
Vol 5 (1) ◽  
Author(s):  
Ryo Yoshida ◽  
Hisashi Hemmi

Abstract Archaea produce unique membrane lipids, which possess two fully saturated isoprenoid chains linked to the glycerol moiety via ether bonds. The isoprenoid chain length of archaeal membrane lipids is believed to be important for some archaea to thrive in extreme environments because the hyperthermophilic archaeon Aeropyrum pernix and some halophilic archaea synthesize extended C25,C25-archaeal diether-type membrane lipids, which have isoprenoid chains that are longer than those of typical C20,C20-diether lipids. Natural archaeal diether lipids possessing longer C30 or C35 isoprenoid chains, however, have yet to be isolated. In the present study, we attempted to synthesize such hyperextended archaeal membrane lipids. We investigated the substrate preference of the enzyme sn-2,3-(digeranylfarnesyl)glycerol-1-phosphate synthase from A. pernix, which catalyzes the transfer of the second C25 isoprenoid chain to the glycerol moiety in the biosynthetic pathway of C25,C25-archaeal membrane lipids. The enzyme was shown to accept sn-3-hexaprenylglycerol-1-phosphate, which has a C30 isoprenoid chain, as a prenyl acceptor substrate to synthesize sn-2-geranylfarnesyl-3-hexaprenylglycerol-1-phosphate, a supposed precursor for hyperextended C25,C30-archaeal membrane lipids. Furthermore, we constructed an artificial biosynthetic pathway by introducing 4 archaeal genes and 1 gene from Bacillus subtilis in the cells of Escherichia coli, which enabled the E. coli strain to produce hyperextended C25,C30-archaeal membrane lipids, which have never been reported so far.


Sign in / Sign up

Export Citation Format

Share Document