Inhibitory Effect of Dry-Heat Treatment and Chemical Sanitizers against Foodborne Pathogens Contaminated on the Surfaces of Materials

2009 ◽  
Vol 38 (9) ◽  
pp. 1265-1270 ◽  
Author(s):  
Young-Min Bae ◽  
Sun-Gi Heu ◽  
Sun-Young Lee
Transfusion ◽  
2008 ◽  
Vol 48 (4) ◽  
pp. 790-790 ◽  
Author(s):  
Johannes Blümel ◽  
Albert Stühler ◽  
Herbert Dichtelmüller

2017 ◽  
Vol 112 ◽  
pp. 489-493
Author(s):  
K.M. Tabi ◽  
G.F. Ngando Ebongue ◽  
G.N. Ntsomboh ◽  
E. Youmbi

2018 ◽  
Vol 84 (7) ◽  
Author(s):  
Lin He ◽  
Zhan Chen ◽  
Shiwei Wang ◽  
Muying Wu ◽  
Peter Setlow ◽  
...  

ABSTRACTDNA damage kills dry-heated spores ofBacillus subtilis, but dry-heat-treatment effects on spore germination and outgrowth have not been studied. This is important, since if dry-heat-killed spores germinate and undergo outgrowth, toxic proteins could be synthesized. Here, Raman spectroscopy and differential interference contrast microscopy were used to study germination and outgrowth of individual dry-heat-treatedB. subtilisandBacillus megateriumspores. The major findings in this work were as follows: (i) spores dry-heat-treated at 140°C for 20 min lost nearly all viability but retained their Ca2+-dipicolinic acid (CaDPA) depot; (ii) in most cases, dry-heat treatment increased the average times and variability of all major germination events inB. subtilisspore germination with nutrient germinants or CaDPA, and in one nutrient germination event withB. megateriumspores; (iii)B. subtilisspore germination with dodecylamine, which activates the spore CaDPA release channel, was unaffected by dry-heat treatment; (iv) these results indicate that dry-heat treatment likely damages spore proteins important in nutrient germinant recognition and cortex peptidoglycan hydrolysis, but not CaDPA release itself; and (v) analysis of single spores incubated on nutrient-rich agar showed that while dry-heat-treated spores that are dead can complete germination, they cannot proceed into outgrowth and thus not to vegetative growth. The results of this study provide new information on the effects of dry heat on bacterial spores and indicate that dry-heat sterilization regimens should produce spores that cannot outgrow and thus cannot synthesize potentially dangerous proteins.IMPORTANCEMuch research has shown that high-temperature dry heat is a promising means for the inactivation of spores on medical devices and spacecraft decontamination. Dry heat is known to killBacillus subtilisspores by DNA damage. However, knowledge about the effects of dry-heat treatment on spore germination and outgrowth is limited, especially at the single spore level. In the current work, Raman spectroscopy and differential interference contrast microscopy were used to analyze CaDPA levels in and kinetics of nutrient- and non-nutrient germination of multiple individual dry-heat-treatedB. subtilisandBacillus megateriumspores that were largely dead. The outgrowth and subsequent cell division of these germinated but dead dry-heat-treated spores were also examined. The knowledge obtained in this study will help understand the effects of dry heat on spores both on Earth and in space, and indicates that dry heat can be safely used for sterilization purposes.


2021 ◽  
Vol 27 (2) ◽  
pp. 293-300
Author(s):  
Shota Koyama ◽  
Yuko Nemoto ◽  
Masahiro Ichikawa ◽  
Daiki Oka ◽  
Yoshimasa Tsujii ◽  
...  

2003 ◽  
Vol 66 (5) ◽  
pp. 767-774 ◽  
Author(s):  
M. L. BARI ◽  
E. NAZUKA ◽  
Y. SABINA ◽  
S. TODORIKI ◽  
K. ISSHIKI

In this study, the effectiveness of dry-heat treatment in combination with chemical treatments (electrolyzed oxidizing [EO] water, califresh-S, 200 ppm of active chlorinated water) with and without sonication in eliminating Escherichia coli O157:H7 on laboratory-inoculated alfalfa, radish, and mung bean seeds was compared with that of dry-heat treatment in combination with irradiation treatment. The treatment of mung bean seeds with EO water in combination with sonication followed by a rinse with sterile distilled water resulted in reductions of approximately 4.0 log10 CFU of E. coli O157:H7 per g, whereas reductions of ca. 1.52 and 2.64 log10 CFU/g were obtained for radish and alfalfa seeds. The maximum reduction (3.70 log10 CFU/g) for mung bean seeds was achieved by treatment with califresh-S and chlorinated water (200 ppm) in combination with sonication and a rinse. The combination of dry heat, hot EO water treatment, and sonication was able to eliminate pathogen populations on mung bean seeds but was unable to eliminate the pathogen on radish and alfalfa seeds. Other chemical treatments used were effective in greatly reducing pathogen populations on radish and alfalfa seeds without compromising the quality of the sprouts, but these treatments did not result in the elimination of pathogens from radish and alfalfa seeds. Moreover, a combination of dry-heat and irradiation treatments was effective in eliminating E. coli O157:H7 on laboratory-inoculated alfalfa, radish, and mung bean seeds. An irradiation dose of 2.0 kGy in combination with dry heat eliminated E. coli O157:H7 completely from alfalfa and mung bean seeds, whereas a 2.5-kGy dose of irradiation was required to eliminate the pathogen completely from radish seeds. Dry heat in combination with irradiation doses of up to 2.0 kGy did not unacceptably decrease the germination percentage for alfalfa seeds or the length of alfalfa sprouts but did decrease the lengths of radish and mung bean sprouts.


Sign in / Sign up

Export Citation Format

Share Document