Potential for Application as a Starter Culture of Tyramine-Reducing Strain

2017 ◽  
Vol 46 (12) ◽  
pp. 1561-1567 ◽  
Author(s):  
Hyang-Rin Kang ◽  
Yae-Lim Lee ◽  
Han-Joon Hwang
Keyword(s):  
2020 ◽  
Vol 29 (12) ◽  
pp. 59-63
Author(s):  
O.I. Parakhina ◽  
◽  
M.N. Lokachuk ◽  
L.I. Kuznetsova ◽  
E.N. Pavlovskaya ◽  
...  

The research was carried out within the framework of the theme of state assignment № 0593–2019–0008 «To develop theoretical foundations for creating composite mixtures for bakery products using physical methods of exposure that ensure homogeneity, stability of mixtures and bioavailability of nutrients, to optimize diets population of Russia». The data on the species belonging of new strains of lactic acid bacteria and yeast isolated from samples of good quality gluten-free starter cultures are presented. A comparative assessment of the antagonistic and acid-forming activity of strains of lactic acid bacteria and the fermentative activity of yeast was carried out. The composition of microbial compositions from selected strains of LAB and yeast was developed. The influence of the starter culture on the new microbial composition on the physicochemical, organoleptic indicators of the bread quality and resistance to mold and ropy-disease was investigated.


2018 ◽  
Vol 6 (10) ◽  
pp. 123-130
Author(s):  
Yaroslava Zhukova ◽  
◽  
Pylyp Petrov ◽  
Olena Boloba ◽  
Tetiana Ohrimenko ◽  
...  

2020 ◽  
Vol 23 (18) ◽  
Author(s):  
RanjbarShwan Abdulrahman ◽  
Abduljabar Omer Qoja

2019 ◽  
Vol 15 (1) ◽  
pp. 40-47
Author(s):  
Elaheh Ahmadi ◽  
Reza Mohammadi ◽  
Sara Hasanvand ◽  
Milad Rouhi ◽  
Amir Mohammad Mortazavian ◽  
...  

Background: Doogh is a traditional Iranian fermented milk drink that is currently a very popular product in Iran. In the present study, the combined effects of incubation temperature, type of starter culture, and final pH of fermentation on the viability of two probiotic strains (Lactobacillus acidophilus La-5 (A) and Bifidobacterium lactis Bb-12 (B)) and biochemical and sensory characteristics of probiotic Doogh were investigated. </P><P> Method: Different treatments were prepared with yoghurt starter culture containing probiotics, using reconstituted skimmed milk with 6% of solid nonfat. They were incubated at 38°C or 44°C until pH 4.0 or pH 4.5 and were kept for 21 days at 4&#176;C or 8&#176;C storage temperature. The biochemical properties of treatments were evaluated during fermentation and refrigerated storage. The viable count and sensory attributes of treatments were studied at the end of fermentation and at the end of storage. </P><P> Results: Results showed that the greatest mean pH drop rate, mean acidity increase rate and mean redox potential increase rate and the shortest incubation time were observed in treatments incubated at 44&#176;C with final pH of 4.5. The highest survival of both probiotic strains during storage was related to treatments with fermentation temperature of 38&#176;C and final pH of 4.5. Treatments ABY1-38&#176;C-4.0 had the highest sensorial total acceptance at the end of refrigerated storage. </P><P> Conclusion: It would be concluded that the best treatment was ABY3-38&#176;C-4 stored at 8°C in regards of probiotics’ viability and sensory characteristics of Doogh. Thus, controlling the temperature of refrigerated storage is the most importance factor during storage and distribution.


2009 ◽  
Vol 62 (4) ◽  
pp. 549-555 ◽  
Author(s):  
HABIB ABBASI ◽  
MOHAMMAD EBRAHIMZADEH MOUSAVI ◽  
MOHAMMAD REZA EHSANI ◽  
ZAHRA EMAM d-JOMEA ◽  
MOHARAM VAZIRI ◽  
...  

Foods ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 139
Author(s):  
Natalia Aparicio-García ◽  
Cristina Martínez-Villaluenga ◽  
Juana Frias ◽  
Elena Peñas

This study investigates the use of sprouted oat flour as a substrate to develop a novel gluten-free beverage by fermentation with a probiotic (Lactobacillus plantarum WCFS1) starter culture. Physicochemical, microbiological, nutritional and sensory properties of sprouted oat fermented beverage (SOFB) were characterized. After fermentation for 4 h, SOFB exhibited an acidity of 0.42 g lactic acid/100 mL, contents of lactic and acetic acids of 1.6 and 0.09 g/L, respectively, and high viable counts of probiotic starter culture (8.9 Log CFU/mL). Furthermore, SOFB was a good source of protein (1.7 g/100 mL), β-glucan (79 mg/100 mL), thiamine (676 μg/100 mL), riboflavin (28.1 μg/100 mL) and phenolic compounds (61.4 mg GAE/100 mL), and had a high antioxidant potential (164.3 mg TE/100 mL). Spoilage and pathogenic microorganisms were not detected in SOFB. The sensory attributes evaluated received scores higher than 6 in a 9-point hedonic scale, indicating that SOFB was well accepted by panelists. Storage of SOFB at 4 °C for 20 days maintained L. plantarum viability and a good microbial quality and did not substantially affect β-glucan content. SOFB fulfils current consumer demands regarding natural and wholesome plant-based foods.


AMB Express ◽  
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Song Wang ◽  
Ran Tian ◽  
Buwei Liu ◽  
Hongcai Wang ◽  
Jun Liu ◽  
...  

AbstractSugarcane molasses are considered a potential source for bioethanol’s commercial production because of its availability and low market price. It contains high concentrations of fermentable sugars that can be directly metabolized by microbial fermentation. Heterofermentative lactic acid bacteria, especially Lactiplantibacillus casei, have a high potential to be a biocatalyst in ethanol production that they are characterized by strong abilities of carbohydrate metabolism, ethanol synthesis, and high alcohol tolerance. This study aimed to evaluate the feasibility of producing ethanol by Lactiplantibacillus casei used the ethanologen engineering strain L. casei E1 as a starter culture and cane molasses as substrate medium. The effects of environmental factors on the metabolism of L. casei E1 were analyzed by high-performance liquid chromatography (HPLC) system, and the gene expression of key enzymes in carbon source metabolism was detected using quantitative real-time PCR (RT–qPCR). Results showed that the strain could grow well, ferment sugar quickly in cane molasses. By fermenting this bacterium anaerobically at 37 °C for 36 h incubation in 5 °BX molasses when the fermenter’s pH was controlled at 6.0, ethanol yield reached 13.77 g/L, and carbohydrate utilization percentage was 78.60%. RT-qPCR results verified the strain preferentially ferment glucose and fructose of molasses to ethanol at the molecular level. In addition, the metabolism of sugars, especially fructose, would be inhibited by elevating acidity. Our findings support the theoretical basis for exploring Lactic acid bacteria as a starter culture for converting sugarcane molasses into ethanol.


2017 ◽  
Vol 80 (12) ◽  
pp. 2137-2146 ◽  
Author(s):  
Dimitrios Noutsopoulos ◽  
Athanasia Kakouri ◽  
Eleftheria Kartezini ◽  
Dimitrios Pappas ◽  
Efstathios Hatziloukas ◽  
...  

ABSTRACT This study evaluated in situ expression of the nisA gene by an indigenous, nisin A–producing (NisA+) Lactococcus lactis subsp. cremoris raw milk genotype, represented by strain M78, in traditional Greek Graviera cheeses under real factory-scale manufacturing and ripening conditions. Cheeses were produced with added a mixed thermophilic and mesophilic commercial starter culture (CSC) or with the CSC plus strain M78 (CSC+M78). Cheeses were sampled after curd cooking (day 0), fermentation of the unsalted molds for 24 h (day 1), brining (day 7), and ripening of the brined molds (14 to 15 kg each) for 30 days in a fully controlled industrial room (16.5°C; 91% relative humidity; day 37). Total RNA was directly extracted from the cheese samples, and the expression of nisA gene was evaluated by real-time reverse transcription PCR (qRT-PCR). Agar overlay and well diffusion bioassays were correspondingly used for in situ detection of the M78 NisA+ colonies in the cheese agar plates and antilisterial activity in whole-cheese slurry samples, respectively. Agar overlay assays showed good growth (&gt;8 log CFU/g of cheese) of the NisA+ strain M78 in coculture with the CSC and vice versa. The nisA expression was detected in CSC+M78 cheese samples only, with its expression levels being the highest (16-fold increase compared with those of the control gene) on day 1, followed by significant reduction on day 7 and almost negligible expression on day 37. Based on the results, certain intrinsic and mainly implicit hurdle factors appeared to reduce growth prevalence rates and decrease nisA gene expression, as well as the nisin A–mediated antilisterial activities of the NisA+ strain M78 postfermentation. To our knowledge, this is the first report on quantitative expression of the nisA gene in a Greek cooked hard cheese during commercial manufacturing and ripening conditions by using a novel, rarely isolated, indigenous NisA+ L. lactis subsp. cremoris genotype as costarter culture.


Fermentation ◽  
2021 ◽  
Vol 7 (3) ◽  
pp. 112
Author(s):  
Grazia Alberico ◽  
Angela Capece ◽  
Gianluigi Mauriello ◽  
Rocchina Pietrafesa ◽  
Gabriella Siesto ◽  
...  

In recent years, as a consequence of the re-evaluation of the role of non-Saccharomyces yeasts, several studies have been conducted on the use of controlled mixed fermentations with Saccharomyces and different non-Saccharomyces yeast species from the winemaking environment. To benefit from the metabolic particularities of some non-Saccharomyces yeasts, the management of a non-Saccharomyces strain in mixed fermentation is a crucial step, in particular the use of procedures addressed to increase the persistence of non-Saccharomyces strains during the fermentative process. The use of microencapsulation for cell immobilization might represent a strategy for enhancing the competitiveness of non-Saccharomyces yeasts during mixed fermentation. This study was aimed to assess the fermentative performance of a mixed starter culture, composed by a wild Hanseniaspora osmophila strain (ND1) and a commercial Saccharomyces cerevisiae strain (EC1118). For this purpose, free and microencapsulated cells of ND1 strain were tested in co-culture with EC1118 during mixed fermentations in order to evaluate the effect of the microencapsulation on fermentative behavior of mixed starter and final wine composition. The data have shown that H. osmophila cell formulation affects the persistence of both ND1 and EC1118 strains during fermentations and microencapsulation resulted in a suitable system to increase the fermentative efficiency of ND1 strain during mixed starter fermentation.


Sign in / Sign up

Export Citation Format

Share Document