scholarly journals NOAEL Benzene in White Mice as the Basis for Determining the Safe Limit of Benzene Concentration in the Pulogadung Shoe Industry Home in Jakarta

Dose-Response ◽  
2020 ◽  
Vol 18 (2) ◽  
pp. 155932582092102
Author(s):  
Abdul Rohim Tualeka ◽  
Ng Yee Guan ◽  
Syamsiar S. Russeng ◽  
Ahsan Ahsan ◽  
Indri H. Susilowati ◽  
...  

In the shoes industry, benzene constitute as one of the source of chemical hazard especially used in the gluing section. This compound is metabolized by the liver, forming free radicals in the body which can ultimately reduce the concentration of glutathione and increased malondialdehyde causing DNA degeneration. The purpose of this study was to determine the relationship between benzene concentration, excess cancer risk (ECR), malondialdehyde, glutathione, and DNA degeneration among workers in shoes industry in Osowilangun, Surabaya. This is an observational study with a cross-sectional design. The number of research samples was 25 respondents. The average concentration of benzene in workers was above the threshold (10.31 ppm). There were 15 (60%) respondents with ECR >0.0001 who experienced DNA degeneration. There was no relationship between benzene concentration, malondialdehyde, glutathione, and DNA degeneration. However, there was a relationship between benzene ECR, malondialdehyde, glutathione, and DNA degeneration in the shoe industry workers in Osowilangun.


2020 ◽  
Author(s):  
Suman Duhan ◽  
Kedar Sahoo ◽  
Sudhir Kumar Singh ◽  
Manoj Kumar

The development of a sensitive alpha-NaYF4:Yb3+, Er3+ solid-phase upconverting platform (UCP) has been realized using Moringa oleifera leaf extract for selective detection of arsenic (As III) contamination in drinking water. The presence of polyphenols in the leaves extract is shown to induce luminescence resonance transfer (LRET), diminishing thereby the Er3+ upconverting red and green emissions activated by 980 nm excitation. However, addition of As3+ species interrupts the LRET process and restores emission proportionately. This feature allows platform to selectively detect arsenic pollution in water below the safe limit of 10 ppt. The uniqueness of UCP lies in monitoring the As3+ contamination in samples containing heavy ions (Cd2+, Hg2+) as well, without apparent effect on the signal reproducibility. UCP is also found to be insensitive to other interfering ions like Pb2+, H2PO4-, F-, Cl-, Ca2+, Mg2+, Sn2+, Cr6+, Fe2+ and Co2+, if present.<br><br>


2018 ◽  
Vol 2 (2) ◽  
pp. 86
Author(s):  
Mila K. Wardani ◽  
Felicia T. Nuciferani ◽  
Mohamad F.N. Aulady

Landslide one of the natural disasters that caused many victims. Therefore, the landslide need a construction that can withstand landslide force. This study aims to plan retaining walls to prevent landslides in the farm area in Kandangan Subdistrict, Kediri Regency. The method used is to use slide analysis which is used to plan the retaining wall. In addition the planning of soil containment walls u ses several methods as a comparison. The results of this study indicate that the planning of ordinary soil retaining walls is still not enough to overcome slides. The minimum SF value that meets the safe limit of landslide prevention is 1.541 in the combination of 1/3 H terracing and the number of gabions as many as 7 with a total height of 2- 3 m .


Author(s):  
Qixiang Zhang ◽  
Qiyan Feng ◽  
Xueqiang Zhu ◽  
Mei Zhang ◽  
Yanjun Wang ◽  
...  

In order to describe the changes of soil temperature field, air flow field and remediation situation with time during the process of thermally enhanced SVE (soil vapor extraction), a remediation experiment of benzene contaminated soil with single extraction pipe was carried out in a box device. The results showed that the whole temperature of the system was raised to 80 °C in 4 h. 43% of benzene were removed in the first 2% of the extraction time. After 24 h, the repair efficiency was close to 100%. The device can efficiently remove benzene from soil. By continuously monitoring the parameters in the operation process of the system, the spatial distribution of temperature and soil gas pollutant concentration with time was plotted. It showed the benzene concentration distribution in the soil gas was more consistent with the temperature distribution before the start of ventilation, and the concentration of benzene in the soil gas dropped rapidly after ventilation, while the temperature distribution was almost unaffected. In the treatment of soil with a benzene content of 17.8 mg∙kg−1, when the soil gas benzene concentration is the highest at 180 min, the peak value is 11,200 mg∙m−3, and the average concentration is 7629.4 mg∙m−3.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Katalin Bodor ◽  
Zsolt Bodor ◽  
Alexandru Szép ◽  
Róbert Szép

AbstractThe present study aims to analyze the temporal variations of PM10 and to assess the health risk indexes caused by trace elements from particulate matter (PM10) via inhalation, ingestion, and dermal absorption by adults and children in Copșa Mică (Romania) during 2009–2019. The results revealed a high multi-annual mean concentration of PM10 and trace elements. The analyzed air pollutants showed a decreasing trend during the studied years, therefore 44.11%, 43.48%, 36.07%, 16.02%, and 15.80% lower values were observed for As, Cd, Ni, PM10, and Pb, respectively, due to environmental regulations. The daily exceedance percentage of Pb and Cd was very high, representing 21.74% and 11.26%, followed by PM10 and As concentrations with 4.72% and 3.92%. The ratio between the trace element concentration measured in Copșa Mică and the country average was 2.46, 4.01, 2.44 and 10.52 times higher for As, Cd, Ni and Pb. The calculated Hazard Quotient values via inhalation were higher than the safe limit (1), which accounted 1.81, 3.89 and 4.52, for As, Cd and Ni, respectively, indicating that the trace elements might present a non-carcinogenic risk to both adults and children. Furthermore, the concentration of all studied trace elements in Copșa Mică showed cancer risk for adults via inhalation and dermal absorption as well.


Author(s):  
Guillermo Oliver ◽  
Pablo Gil ◽  
Jose F. Gomez ◽  
Fernando Torres

AbstractIn this paper, we present a robotic workcell for task automation in footwear manufacturing such as sole digitization, glue dispensing, and sole manipulation from different places within the factory plant. We aim to make progress towards shoe industry 4.0. To achieve it, we have implemented a novel sole grasping method, compatible with soles of different shapes, sizes, and materials, by exploiting the particular characteristics of these objects. Our proposal is able to work well with low density point clouds from a single RGBD camera and also with dense point clouds obtained from a laser scanner digitizer. The method computes antipodal grasping points from visual data in both cases and it does not require a previous recognition of sole. It relies on sole contour extraction using concave hulls and measuring the curvature on contour areas. Our method was tested both in a simulated environment and in real conditions of manufacturing at INESCOP facilities, processing 20 soles with different sizes and characteristics. Grasps were performed in two different configurations, obtaining an average score of 97.5% of successful real grasps for soles without heel made with materials of low or medium flexibility. In both cases, the grasping method was tested without carrying out tactile control throughout the task.


2012 ◽  
Vol 2012 ◽  
pp. 1-6 ◽  
Author(s):  
Lijun Cheng ◽  
Yong Kang ◽  
Guishui Li

Difference between adsorption of benzene by diatomite and nano-TiO2immobilized on diatomite was investigated. And effects of temperature, light intensity, relative humidity, and initial benzene concentration on adsorption and degradation of benzene by nano-TiO2immobilized on diatomite were also studied. The experimental results showed that when initial benzene concentration was2.2×10−3 mg L−1, it could be degraded to below safe concentration (1.1×10−4 mg L−1) after 50 h when temperature was 20°C, but it just needed 30 h at 35°C. When light intensity was 6750 Lx, it needed 30 h for benzene to be degraded to below safe concentration, but benzene could barely be degraded without light. When relative humidity was 50%, benzene could be degraded to1.0×10−4 mg L−1after 30 h, while its concentration could be reduced to7.0×10−5 mg L−1at the relative humidity of 80%.


2008 ◽  
Vol 154 (1-3) ◽  
pp. 1013-1018 ◽  
Author(s):  
P.S. Khillare ◽  
Raza Rafiqul Hoque ◽  
Vijay Shridhar ◽  
Tripti Agarwal ◽  
S. Balachandran

Sign in / Sign up

Export Citation Format

Share Document