scholarly journals Extraction of Outer Membrane Proteins of Proteus Mirabilis Isolated From Urinary Tract Infections and their Immunological Effect In Vitro

2007 ◽  
Vol 56 (12) ◽  
pp. 1600-1607 ◽  
Author(s):  
Analía Lima ◽  
Pablo Zunino ◽  
Bruno D'Alessandro ◽  
Claudia Piccini

Proteus mirabilis, a common cause of urinary tract infections, expresses iron-regulated outer-membrane proteins (OMPs) in response to iron restriction. It has been suggested that a 64 kDa OMP is involved in haemoprotein uptake and that this might have a role in pathogenesis. In order to confirm this hypothesis, this study generated a P. mirabilis mutant strain (P7) that did not express the 64 kDa OMP, by insertion of the TnphoA transposon. The nucleotide sequence of the interrupted gene revealed that it corresponded to a haemin receptor precursor. Moreover, in vitro growth assays showed that the mutant was unable to grow using haemoglobin and haemin as unique iron sources. The authors also carried out in vivo growth and infectivity assays and demonstrated that P7 was not able to survive in an in vivo model and was less efficient than wild-type strain Pr 6515 in colonizing the urinary tract. These results confirmed that the P. mirabilis 64 kDa iron-regulated OMP is a haem receptor that has an important role for survival and multiplication of these bacteria in the mammalian host and in the development of urinary tract infection.


2011 ◽  
Vol 63 (2) ◽  
pp. 174-182 ◽  
Author(s):  
Bruno D'Alessandro ◽  
Leticia M. S. Lery ◽  
Wanda M. A. Krüger ◽  
Analía Lima ◽  
Claudia Piccini ◽  
...  

2019 ◽  
Vol 14 (12) ◽  
pp. 1023-1034 ◽  
Author(s):  
José JC Sidrim ◽  
Bruno R Amando ◽  
Francisco IF Gomes ◽  
Marilia SMG do Amaral ◽  
Paulo CP de Sousa ◽  
...  

Aim: This study proposes the impregnation of Foley catheters with chlorpromazine (CPZ) to control biofilm formation by Escherichia coli, Proteus mirabilis and Klebsiella pneumoniae. Materials & methods: The minimum inhibitory concentrations (MICs) for CPZ and the effect of CPZ on biofilm formation were assessed. Afterward, biofilm formation and the effect of ciprofloxacin and meropenem (at MIC) on mature biofilms grown on CPZ-impregnated catheters were evaluated. Results: CPZ MIC range was 39.06–625 mg/l. CPZ significantly reduced (p < 0.05) biofilm formation in vitro and on impregnated catheters. In addition, CPZ-impregnation potentiated the antibiofilm activity of ciprofloxacin and meropenem. Conclusion: These findings bring perspectives for the use of CPZ as an adjuvant for preventing and treating catheter-associated urinary tract infections.


2008 ◽  
Vol 76 (9) ◽  
pp. 4222-4231 ◽  
Author(s):  
Greta R. Nielubowicz ◽  
Sara N. Smith ◽  
Harry L. T. Mobley

ABSTRACTProteus mirabilis, a gram-negative bacterium, is a frequent cause of complicated urinary tract infections in those with functional or anatomical abnormalities or those subject to long-term catheterization. To systematically identify surface-exposed antigens as potential vaccine candidates, proteins in the outer membrane fraction of bacteria were separated by two-dimensional gel electrophoresis and subjected to Western blotting with sera from mice experimentally infected withP. mirabilis. Protein spots reactive with sera were identified by mass spectrometry, which in conjunction with the newly completed genome sequence ofP. mirabilisHI4320, was used to identify surface-exposed antigens. Culture conditions that may mimic in vivo conditions more closely than Luria broth (growth in human urine and under iron limitation and osmotic stress) were also used. Thirty-seven antigens to which a humoral response had been mounted, including 23 outer membrane proteins, were identified. These antigens are presumably expressed during urinary tract infection. Protein targets that are both actively required for virulence and antigenic may serve as protective antigens for vaccination; thus, five representative antigens were selected for use in virulence studies. Strains ofP. mirabiliswith mutations in three of the corresponding genes (the PMI0047 gene,rafY, andfadL) were not attenuated in the murine model of urinary tract infection. Putative iron acquisition proteins PMI0842 and PMI2596, however, both contribute to fitness in the urinary tract and thus emerge as vaccine candidates.


1998 ◽  
Vol 44 (9) ◽  
pp. 896-904 ◽  
Author(s):  
R K Latta ◽  
M J Schur ◽  
D L Tolson ◽  
E Altman

Proteus mirabilis is a common cause of upper urinary tract infections. Fimbriae-mediated adherence of this organism to urinary tract epithelium and invasion of host cells are factors thought to be important in its pathogenesis. We have assessed the effect of growth in serum, blood, and urine on the ability of P. mirabilis 7570 to adhere to and invade in vitro the cell line EJ/28, derived from a human urinary tract tumour, and to express nonagglutinating fimbriae (NAF). Proteus mirabilis was capable of adhering to EJ/28 cells to varying degrees depending upon the growth conditions used. It was invasive under all conditions, except when grown in urine, and was found to be particularly so when serum or blood was present in the media. Expression of NAF occurred under all growth conditions examined and was limited only by a decrease in temperature.Key words: adhesion, invasion, nonagglutinating fimbriae, Proteus mirabilis.


Antibiotics ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 825
Author(s):  
Henrique Pinto ◽  
Manuel Simões ◽  
Anabela Borges

This study sought to assess the prevalence and impact of biofilms on two commonly biofilm-related infections, bloodstream and urinary tract infections (BSI and UTI). Separated systematic reviews and meta-analyses of observational studies were carried out in PubMed and Web of Sciences databases from January 2005 to May 2020, following PRISMA protocols. Studies were selected according to specific and defined inclusion/exclusion criteria. The obtained outcomes were grouped into biofilm production (BFP) prevalence, BFP in resistant vs. susceptible strains, persistent vs. non-persistent BSI, survivor vs. non-survivor patients with BSI, and catheter-associated UTI (CAUTI) vs. non-CAUTI. Single-arm and two-arm analyses were conducted for data analysis. In vitro BFP in BSI was highly related to resistant strains (odds ratio-OR: 2.68; 95% confidence intervals-CI: 1.60–4.47; p < 0.01), especially for methicillin-resistant Staphylococci. BFP was also highly linked to BSI persistence (OR: 2.65; 95% CI: 1.28–5.48; p < 0.01) and even to mortality (OR: 2.05; 95% CI: 1.53–2.74; p < 0.01). Candida spp. was the microorganism group where the highest associations were observed. Biofilms seem to impact Candida BSI independently from clinical differences, including treatment interventions. Regarding UTI, multi-drug resistant and extended-spectrum β-lactamase-producing strains of Escherichia coli, were linked to a great BFP prevalence (OR: 2.92; 95% CI: 1.30–6.54; p < 0.01 and OR: 2.80; 95% CI: 1.33–5.86; p < 0.01). More in vitro BFP was shown in CAUTI compared to non-CAUTI, but with less statistical confidence (OR: 2.61; 95% CI: 0.67–10.17; p < 0.17). This study highlights that biofilms must be recognized as a BSI and UTI resistance factor as well as a BSI virulence factor.


2020 ◽  
Vol 7 (Supplement_1) ◽  
pp. S823-S823
Author(s):  
Kendra Foster ◽  
Linnea A Polgreen ◽  
Brett Faine ◽  
Philip M Polgreen

Abstract Background Urinary tract infections (UTIs) are one of the most common bacterial infections. There is a lack of large epidemiologic studies evaluating the etiologies of UTIs in the United States. This study aimed to determine the prevalence of different UTI-causing organisms and their antimicrobial susceptibility profiles among patients being treated in a hospital setting. Methods We used the Premier Healthcare Database. Patients with a primary diagnosis code of cystitis, pyelonephritis, or urinary tract infection and had a urine culture from 2009- 2018 were included in the study. Both inpatients and patients who were only treated in the emergency department (ED) were included. We calculated descriptive statistics for uropathogens and their susceptibilities. Multi-drug-resistant pathogens are defined as pathogens resistant to 3 or more antibiotics. Resistance patterns are also described for specific drug classes, like resistance to fluoroquinolones. We also evaluated antibiotic use in this patient population and how antibiotic use varied during the hospitalization. Results There were 640,285 individuals who met the inclusion criteria. Females make up 82% of the study population and 45% were age 65 or older. The most common uropathogen was Escherichia Coli (64.9%) followed by Klebsiella pneumoniae (8.3%), and Proteus mirabilis (5.7%). 22.2% of patients were infected with a multi-drug-resistant pathogen. We found that E. Coli was multi-drug resistant 23.8% of the time; Klebsiella pneumoniae was multi-drug resistant 7.4%; and Proteus mirabilis was multi-drug resistant 2.8%. The most common antibiotics prescribed were ceftriaxone, levofloxacin, and ciprofloxacin. Among patients that were prescribed ceftriaxone, 31.7% of them switched to a different antibiotic during their hospitalization. Patients that were prescribed levofloxacin and ciprofloxacin switched to a different antibiotic 42.8% and 41.5% of the time, respectively. Conclusion E. Coli showed significant multidrug resistance in this population of UTI patients that were hospitalized or treated within the ED, and antibiotic switching is common. Disclosures All Authors: No reported disclosures


2021 ◽  
Vol 11 (9) ◽  
pp. 4315
Author(s):  
Emanuel Vamanu ◽  
Laura Dorina Dinu ◽  
Cristina Mihaela Luntraru ◽  
Alexandru Suciu

Bioactive compounds and phenolic compounds are viable alternatives to antibiotics in recurrent urinary tract infections. This study aimed to use a natural functional product, based on the bioactive compounds’ composition, to inhibit the uropathogenic strains of Escherichia coli. E. coli ATCC 25922 was used to characterize the IVCM (new in vitro catheterization model). As support for reducing bacterial proliferation, the cytotoxicity against a strain of Candida albicans was also determined (over 75% at 1 mg/mL). The results were correlated with the analysis of the distribution of biologically active compounds (trans-ferulic acid-268.44 ± 0.001 mg/100 g extract and an equal quantity of Trans-p-coumaric acid and rosmarinic acid). A pronounced inhibitory effect against the uropathogenic strain E. coli 317 (4 log copy no./mL after 72 h) was determined. The results showed a targeted response to the product for tested bacterial strains. The importance of research resulted from the easy and fast characterization of the functional product with antimicrobial effect against uropathogenic strains of E. coli. This study demonstrated that the proposed in vitro model was a valuable tool for assessing urinary tract infections with E. coli.


Sign in / Sign up

Export Citation Format

Share Document