scholarly journals Propiedades bioactivas de frutas tropicales exóticas y sus beneficios a la salud

2021 ◽  
Vol 70 (3) ◽  
pp. 206-215
Author(s):  
Salma A. Enriquez-Valencia ◽  
Norma Julieta Salazar-López ◽  
Maribel Robles-Sánchez ◽  
Gustavo A. González-Aguilar ◽  
J. Fernando Ayala-Zavala ◽  
...  

Las frutas exóticas se encuentran dentro del grupo de las frutas tropicales y su carácter perecedero limita su exportación a mercados distantes. En general, su consumo es local, son subutilizadas o poco valoradas tanto en el hogar como industrialmente; sin embargo, debido su alto valor nutricional, su consumo se ha incrementado significativamente en los últimos años. Estas frutas son fuente de compuestos bioactivos como fibra, vitamina C, carotenoides, ácidos fenólicos y polifenoles, los cuales han sido asociados a la reducción de los riesgos de enfermedades crónicas causadas por el estrés oxidativo. Estos compuestos bioactivos han demostrado que poseen varias actividades biológicas in vitro e in vivo incluyendo actividad antioxidante, antimicrobiana, antiinflamatoria, antiedad, neuroprotectora y antiviral entre otras. Por lo tanto, la obtención de ingredientes funcionales a partir de las frutas tropicales consideradas exóticas resulta viable; así como su utilización para el desarrollo de alimentos funcionales y nutracéuticos, para elaboración de productos de la industria farmacéutica y la conservación de alimentos. En la presente revisión se discute la información más relevante publicada en el período 2010-2020 de las principales bases de datos científicas, incluyendo Scopus, Science Direct, PubMed, Medline y Scielo, sobre los compuestos fenólicos y las bioactividades reportadas de las frutas tropicales exóticas como acai (Euterpe oleraceae), acerola (Malpighia emarginata), buruti (Mauritia flexuosa) caqui (Diospyros kaki), chicozapote (Manilkara zapota), litchi (Litchi chinensis), maracuyá (Passiflora edulis), noni (Morinda citrifolia) rambután (Nephelium lappaceum), pitaya blanca (Hylocereus undatus), pitaya roja (Hylocereus polyrhizus) y su relación con sus potenciales efectos benéficos en la salud. Exotic fruits are found in the group of tropical fruits and their perishable nature limits their export to distant markets. In general, their consumption is local; they are underutilized or little valued both at home and industrially; however, its consumption has increased significantly in recent years due to its high nutritional value. These fruits are a source of bioactive compounds such as fiber, vitamin C, carotenoids, phenolic acids and polyphenols, which have been associated with reducing the risks of chronic diseases caused by oxidative stress. These bioactive compounds have been shown to possess various in vitro and in vivo biological activities, including antioxidant, antimicrobial, antiviral, anti-inflammatory, anti-aging, neuroprotective, and among others. Therefore, obtaining functional ingredients from tropical fruits considered exotic is viable and used to develop functional and nutraceutical foods, prepare products for the pharmaceutical industry and food preservation. This review discusses the most relevant information published in the 2010-2020 period from the main scientific databases, including Scopus, Science Direct, PubMed, Medline and Scielo, on phenolic compounds and reported bioactivities of exotic tropical fruits such as acai (Euterpe oleraceae), acerola (Malpighia emarginata), persimmon (Diospyros kaki), chicozapote (Manilkara zapota), litchi (Litchi chinensis), passion fruit (Passiflora edulis) noni (Morinda citrifolia), rambutan (Nephelium lappaceum), white pitaya (Hylocereus undatus) and red pitaya (Hylocereus polyrhizus) and their relationship with their potential beneficial effects on health.

2020 ◽  
Vol 3 (1) ◽  
pp. 01-21
Author(s):  
Faisal Ali

Noni (Morinda citrifolia L.) is being evaluated in laboratory research for its benefits as an antioxidant and immunity booster, as well as for its properties to prevent tumors and cure diabetes. The vast spread of Noni in tropical region of the globe, from America reaching to Africa and Southeast Asia, contributed in enhancing its usage and potency due to the diversity in harvest zone. Noni parts comprise fruits, seeds, leaves, and flowers are being used for individual nutritional and therapeutical values. Nevertheless, the fruit is widely characterized to contain the most valuable bioactive substances. On the other hand, diabetic retinopathy (DR) is a microvascular disorder impacting the small blood vessels in the retina, which includes microaneurysms, retinal hemorrhages, and hard exudates results from prolonged exposure to high blood glucose levels. The anti-diabetes effect of Noni extract and juice has been examined but the beneficial role of Noni and its potential mechanisms against the development of diabetic retinopathy phenotype is still ambiguous. This review, therefore, will discusses in details the pharmacological actions of M. citrifolia fruit, along with their isolated phytochemical compounds on diabetic retinopathy markers, through describing the conducted in vitro and in vivo studies as well as clinical data.


2015 ◽  
Vol 51 (3) ◽  
pp. 689-698 ◽  
Author(s):  
Singh Sudarshan ◽  
Bothara Sunil B

The mucilage (MMZ) extracted from the seeds of Manilkara zapota(Linn.) P. Royen syn. using maceration techniques was evaluated for mucoadhesive strength by various in vitro and in vivo methods. The result showed that mucoadhesive strength of seeds mucilage have comparable property toward natural and synthetic polymers such as Guar Gum and hydroxyl propyl methyl cellulose (HPMC E5LV) under the experimental conditions used in this study. Briefly, it could be concluded that the seed mucilage of Manilkara zapota can be used as a pharmaceutical excipient in oral mucoadhesive drug delivery systems. Further, it may be appropriate to study the changes in these properties after chemical modifications.


2010 ◽  
Vol 46 (4) ◽  
pp. 651-656 ◽  
Author(s):  
Adriana Bramorski ◽  
Adriana da Rosa Cherem ◽  
Chaiana Paula Marmentini ◽  
Joseane Torresani ◽  
Tatiana Mezadri ◽  
...  

The plant Morinda citrifolia L. (noni) has been the focus of many recent studies due to its potential effects on treatment and prevention of several diseases. However, there are few in vivo and in vitro studies concerning its composition and antioxidant capacity. The aim of the present study was to determine the total polyphenol content (TPC) and antioxidant capacity of a juice commercialized as noni juice, but containing grape, blueberry and noni fruits. Commercial noni juice was compared against its separate constituents of blueberry and grape juice. Folin-Ciocalteu and DPPH• methods were used to determine the concentration of total polyphenol content and antioxidant activity, respectively. Commercial noni juice presented higher values of TPC (91.90 mg of gallic acid/100 mL juice) and antioxidant activity (5.85 mmol/L) compared to its 5% diluted constituents. Concentrated blueberry juice presented higher TPC and antioxidant activity than the other juices analyzed. Considering that the blueberry and grape juices account for only 10% in the composition of commercial noni juice, it can be inferred that these two components contribute significantly to the antioxidant activity. Therefore, additional studies are necessary in order to elucidate the contribution of the noni juice as an antioxidant.


2018 ◽  
Vol 39 (6) ◽  
pp. 2385
Author(s):  
Maciel Dos Santos Freire ◽  
Carmem Dolores Gonzaga Santos

The genus Meloidogyne includes species of the most common nematodes to affect crops around the world. The species M. enterolobii is notable for affecting and causing serious losses in the production of guava trees and various other economically important crops in Brazil. The aim of this study was to evaluate the susceptibility of 10 plant species to parasitism by M. enterolobii, and the in vitro and in vivo effects of their leaf extracts on the pathogen. Initially seedlings of Solenostemon scutellarioides, Dieffenbachia amoena, Spigelia anthelmia, Plumbago scandens, Ricinus communis, Chenopodium ambrosioides, Azadirachta indica, Morinda citrifolia, Jatropha curcas and Datura stramonium were inoculated with 5,000 eggs of M. enterolobii to evaluate their susceptibility to nematode infection. For the test in vitro, a 5% concentration of the leaf extracts were added to Petri dishes, and 50 J2 of M. enterolobii were placed in each dish. After 48 hours incubation, the juveniles were evaluated for motility and mortality in the extracts. For the test in vivo, leaf extracts were used at the same concentration, however with only the seven most-promising in vitro species. This assay included the following sequence: inoculation of 5,000 eggs in autoclaved and moist soil contained in 1L pots; application of 30 ml of extract to the soil after 24 hours; transplanting of ‘Santa Clara’ tomato seedlings the following day; and reapplying the extract after 7 and 14 days. The results were evaluated 45 days after nematode inoculation. It was seen that the species D. amoena, R. communis, A. indica, M. citrifolia, J. curcas and D. stramonium displayed highly resistant behaviour; S. anthelmia, P. scandens and C. ambrosioides were very resistant, whereas S. scutelarioides was susceptible to the nematode. With the in vitro test, extracts from seven of the 10 species caused 70.4% to 97.4% J2 mortality. Applying the best leaf extracts to the soil was efficient in reducing M. enterolobii infestation in roots of the tomato.


2013 ◽  
Vol 53 (2) ◽  
pp. 882-890 ◽  
Author(s):  
Juliana Kelly da Silva ◽  
Cinthia Baú Betim Cazarin ◽  
Talita C. Colomeu ◽  
Ângela Giovana Batista ◽  
Laura M.M. Meletti ◽  
...  

2021 ◽  
Vol 18 (4) ◽  
pp. 809-816
Author(s):  
Muhammad Kashif ◽  
Naveed Akhtar

Purpose: To develop a stable emulgel formulation from Manilkara zapota fruit extract (MZFE) and evaluate its sun-protective factor (SPF) and its physical retention on facial skin. Methods: Active test formulations containing MZFE and placebo (containing no active ingredients) were prepared by dispersing the primary emulsion into a gel phase. Both test and placebo emulgel formulations were subjected to physicochemical evaluation, stability studies, and assessment of possible photo-protective properties. The sun-protective factor (SPF) was determined in vitro by spectrophotometric analysis. Non-invasive in vivo skin bioengineering technique was used to assess the UV-quenching effects of the test and placebo emulgel formulations. Results: A stable and cosmetically acceptable emulgel formulation loaded with MZFE was obtained. The formulation and control exhibited optimum physicochemical stability in stress stability tests. The formulation exhibited promising photo-protective effects both in vitro (SPF = 14.215 ± 0.140) and in vivo (lasted for approximately 120 min). Conclusion: The developed MZFE-loaded test emulgel formulation possesses suitable photoprotection capability in vitro, and displays quenching effects against specific wavelengths of UV light, indicating a UV-filtering property


2021 ◽  
Vol 48 (3) ◽  
Author(s):  
Dian Laila Purwaningroom ◽  
◽  
Sholihatul Maghfirah ◽  
Muhaimin Rifai ◽  
Widodo ◽  
...  

Traditionally, noni (Morinda citrifolia L.) has been used to treat hypertension in tropical countries. The noni extract was proven to reduce blood pressure and relatively safe to the liver and kidney in the animal model. This extract could inhibit angiotensin-converting enzyme (ACE) and plays a pivotal role in controlling blood pressure. However, the active compound of the extract that has function as the ACE inhibitor is still unknown. Therefore, the objective of this study was to examine the mechanism of anti-hypertension of noni methanol extract as well as its active compound that acts as the ACE inhibitor by using a bioinformatics approach. An enzyme activity analysis showed that noni methanol extract inhibits ACE activity based on a dose-dependent manner. Further analysis using bioinformatic analysis suggested that three active compounds of Morinda citrifolia, namely linoleic acid, palmitate, and oleic acid, might be bound to PPARA and NOS3 protein. The two targeted protein is predicted as a regulator of blood pressure through the PPARA pathway. The findings showed that M. citrifolia has numerous active compounds containing multiple protein targets, which regulate blood pressure. However, in vitro and in vivo research should be conducted to provide evidence for the mechanism.


Sign in / Sign up

Export Citation Format

Share Document