Folgeverbundhybridschmieden eines Querlenkers*/Hybrid forging process within progressive dies of a suspension arm – Lightweight structural construction and heat subjection of hybrid forged parts

2019 ◽  
Vol 109 (10) ◽  
pp. 765-769
Author(s):  
E. Seif ◽  
J. Langner ◽  
M. Stonis ◽  
B. Behrens

Folgeverbundhybridgeschmiedete Bauteile haben großes Potenzial im Leichtbau. Am Beispiel eines Querlenkers wird der Vorteil des Hybridschmiedens in Struktur- und Stoffleichtbau betrachtet. Zusätzlich zeigt die Betrachtung des Wärmeeintrags, dass beim nachträglichen Vergüten das Potenzial des Stoffleichtbaus nicht gefährdet wird.   Components manufactured by hybrid forging in progressive dies have a high potential for lightweight construction. The example of a suspension arm shows the advantage of hybrid forged parts creating new possibilities for structural and material lightweight construction. Additionally, it is demonstrated that the heat subjected to hybrid forged parts during the subsequent hardening process does not threaten the potential of material lightweight construction.

2018 ◽  
Vol 918 ◽  
pp. 28-33 ◽  
Author(s):  
Nikolaus Papenberg ◽  
Stefan Gneiger

In light of emission reduction and weight saving in transport applications, Mg parts gain alot attention due to their good specific mechanical properties and their low mass. While casting is themain process for manufacturing Mg parts for automotive applications, forged parts show some majorbenefits like superior mechanical properties and absence of porosity. In this work a comparison ofclosed die forged parts made from different Mg-alloys has been carried out. The materials used in thewarm forging process were AZ31 and various Mg-Al-Zn-Ca-Y type (AZXW) alloys. Ca additions areknown to improve the oxidation behaviour and the formability of magnesium alloys, while yttrium isused to enhance the flammability resistance of forged parts. The forgeability, mechanical propertiesand microstructure are analyzed and compared in the present paper.


2018 ◽  
Vol 12 (5) ◽  
pp. 767-774
Author(s):  
Katsuaki Nakamura ◽  
◽  
Hiroshi Koresawa ◽  
Hiroyuki Narahara

In the case of a complex shaped helix bevel gear, the forging of complete gear tips is very difficult to achieve. In almost all cases, tooth profile is finished by cutting machine from simple shaped forged parts, therefore requiring considerable machining time and cost. However, there are many approaches to forging. Forging is mainly classified as hot and cold forging, and uses a single motion press. In the case of hot forging takeoff of products from die is difficult by the cooling shrinkage from die and accuracy of products is lower level than cold forging. In addition, in the case of cold forging, a complicated shape is difficult to achieve based on the lack of ductility of the materials. To realize a helix bevel gear using a single forging operation, we applied a tool heating system and three-axis forging press. The tool heating system is applied to prevent a temperature decrease in the material by contact between the tool and forging material during the forging process. Further, to optimize the forging direction and timing, we used a three-axis forging press. We confirmed good forging capability of this special forging process, as well as the high precision of the forged parts. Moreover, through the thermo-mechanical control of steel and the tool temperature, the forged parts showed good mechanical properties, such as high hardness.


Author(s):  
Paweł Widomski ◽  
Maciej Zwierzchowski ◽  
Artur Barełkowski ◽  
Mateusz Tympalski

Based on tests results, the possibility of using this solution in the technique of industrial hot forging was evaluated. The results of laboratory tests have confirmed that lubrication of metal pieces is sufficient as well as proved it to be effective in reducing decarburization of the surface layer. Research works conducted in an induction heater showed differences in decarburization depending on a substance and concentration of lubricants that were used. These differences become more apparent when observing the surface layer of the forged parts. Results indicate that decarburization may be reduced to a minimum when we use Bonderite product in a concentration of 66% and 50%. Another lubricant, Berulit 913, may also be used. However, due to burning graphite in high temperatures, reduction of decarburization goes only as far as half of the thickness of the decarbonized layer. Condursal has no significant effect; nevertheless, it protects over the induction heating stage.


2015 ◽  
Vol 9 (2) ◽  
pp. 184-192 ◽  
Author(s):  
Kiichiro Kawamoto ◽  
◽  
Takeshi Yoneyama ◽  
Masato Okada ◽  

The application of a servo die cushion to the back-pressure forging process improves the shape accuracy of forged parts. Servo die cushions have excellent performance in precise motion control and high responsiveness to set loads. To use a servo die cushion to obtain these features, back pressure is applied to the bottom outer punch during forward extrusion-type forging. Without back pressure, material flow delay around the central counter punch corner results in an unfilled corner at the bottom outer punch. Applying back pressure to the outer punch reduces the area of the unfilled corner. However, extensive back pressure at the beginning of the forming process causes burrs at the bottom because of the clearance between the counter punch and the outer punch; variable back-pressure settings along the punch stroke effectively remove burrs while also providing a smaller unfilled area by allowing for low back pressure at the beginning of the forming process and high back pressure during the forming process. Furthermore, using the flexible slide motion of the servo press to vary the punch motion leads to even further reduction in the unfilled area.


2014 ◽  
Vol 59 (1) ◽  
pp. 371-375
Author(s):  
B. Płonka ◽  
P. Korczak ◽  
K. Remsak ◽  
M. Lech-Grega

Abstract The paper presents the results of the die forging tests of a modified EN AW-6101 alloy with the addition of Zr, using two types of the feedstock materials. The first feedstock materials were ingots cast in a vertical semi-continuous process, the second feedstock materials were extruded rods. The die forging process was carried with parameters enabling “on line” heat treatment (T5 temper). For comparison, forgings were also heat treated to the T6 temper and to thermo-mechanical treated to the T8 and T9 temper. Then forgings made from both feedstock materials were characterised in terms of structure, mechanical properties and electrical conductivity.


Materials ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 422
Author(s):  
Paweł Widomski ◽  
Maciej Zwierzchowski ◽  
Artur Barełkowski ◽  
Mateusz Tympalski

This paper aims to evaluate the effect of pre-coating of forged parts on decarburization in the die forging process. The studies consisted of three stages. In the first instance, different coatings were tested under laboratory conditions by heating steel samples to the temperature of 1200 °C for over five minutes to model the preheating conditions of the induction. Next, testing continued in a commercial forging stand where we tested the effects of different coatings on the rods decarburization during the induction heating process, usually performed before forging. Once completed testing, the measurements and observations of the decarbonized layer were made. The third stage involved analysis of the decarburization of the forged parts after forging. The forged parts were made using precoating of pre-forging elements; pieces cut off a metal rod. Based on tests results, the possibility of using this solution in the technique of industrial hot forging was evaluated. The results of laboratory tests have confirmed that lubrication of metal pieces is sufficient, as well as proved it to be effective in reducing decarburization of the surface layer. Research works conducted in an induction heater showed differences in decarburization depending on a substance and concentration of lubricants that were used. These differences become more apparent when observing the surface layer of the forged parts. Results indicate that decarburization may be reduced to a minimum when we use Bonderite product in a concentration of 66% and 50%. Another lubricant, Berulit 913, may also be used. However, due to burning graphite in high temperatures, reduction of decarburization goes only as far as half of the thickness of the decarbonized layer. Condursal has no significant effect; nevertheless, it protects over the induction heating stage.


Author(s):  
V Alimirzaloo ◽  
S SheydayiGurchinQaleh ◽  
P MashhadiKeshtiban ◽  
S Ahmadi

Lubrication is an essential factor in the metal forming processes such as forging, since it leads to reducing friction at contact surfaces and increasing the surface quality of the forged parts. In order to create desirable tribological properties in the base lubricants, various metal oxide nanoparticles are mostly used as additives. In the present study, the effects of the nanolubricants made by copper oxide (CuO) and alumina (AL2O3) nanoparticles on the surface quality of the forging process have been investigated. The effects of the nanolubricants have been compared with the graphite as a conventional lubricant. Upsetting forging operation of a ring shape workpiece was used for evaluating the lubricants. Experiments were designed and analyzed using Taguchi method and analysis of variance. Results show that the nanolubricants cause a significant improvement on the surface roughness compared to conventional lubricants. Best condition is obtained when 0.8 wt% of CuO nanoparticles is added in paraffin lubricant. Compared with the case of base lubricants with no additives, roughness reduced by 41% and 33% for paraffin and oil10, respectively. Also, the surface roughness decreased by 496% and 235% compared with dry graphite powder and paraffin with 25% graphite, correspondingly.


Author(s):  
Tomasz Bulzak ◽  
Grzegorz Winiarski ◽  
Łukasz Wójcik ◽  
Mirosław Szala

AbstractThis paper presents the modeling of a cold forging process for a rotary sleeve. The process of forging a EN 42CrMo4 steel part was first modeled numerically by the finite element method using simulation software DEFORM 3D ver. 11.0. After that, the developed forging process was verified by experimental tests carried out in laboratory conditions with the use of 1:2 scale tools and a material model of aluminum alloy EN AW-6060. Finite element method (FEM) results demonstrated that rotary sleeves could be formed from tubes by cold forging. Results of the experimental tests showed, however, that the material inside the hole of the work piece might not adhere to the surface of the sizing pin. Distributions of strain and stress during the forging process are determined. Geometrical parameters of forged parts obtained in experimental tests are compliant with the dimensions of forged parts simulated by FEM. In addition, experimental forces of the forging process show a high agreement with the forces obtained in FEM simulations.


2019 ◽  
Vol 809 ◽  
pp. 541-546
Author(s):  
Enrico Rudolph ◽  
Christian Müller ◽  
Andreas Ehrlich ◽  
Sandra Gelbrich ◽  
Lothar Kroll

Within the research project a variable gridshell in lightweight design was developed that permit the building of free-formed mobile architectures. The construction consists of a large number of straight length-adjustable bars pin-jointed via so-called knots and enables extremely efficient and stable support structures with high potential for lightweight construction.


2013 ◽  
Vol 58 (4) ◽  
pp. 1183-1189 ◽  
Author(s):  
G. Samołyk

Abstract The orbital forging is one of the metal forming processes which enables the manufacture of products through worm or cold working. A characteristic feature of this technological process is the use of a special wobbling motion of one of the tools in order to reduce the required forming force. This is particularly advantageous during the formation of products in the shape of a disc or a flange pin. Unfortunately, typical constraints of cold orbital forging are: uncontrolled buckling, loss of shape stability (“mushroom effect”) and cracks. They depend on the technological parameters of the process and their cause can be explained on the basis of e.g. workpiece stress state analysis, which is a difficult task due to the complexity of orbital forging process. The article discusses the issues of stress and strain in cold orbital forged parts of the flange pin type, made of AlMgSi aluminum alloy. The results of the presented FEM simulation, verified experimentally, explain the influence of the theoretical aspects of this process on its implementation conditions. It is assumed that orbital forging is performed on the PXW-100A press and the numerical model takes into account all possible variants of the process. Debate boils down to discussing the stress and strain state (e.g. analyzing the stress and strain rate fields) occurring in the workpiece in the context of chosen technological parameters and constrains of orbital forging process


Sign in / Sign up

Export Citation Format

Share Document