Obtaining Humic Preparations From The Waste Of A Hydraulic Dump Of Coal Deposits As A Promising Waste-Free Technology

2021 ◽  
Vol 03 (07) ◽  
pp. 1-8
Author(s):  
Isokov Maksud Uzаkovich ◽  
◽  
Alimov Rasulkhan Sarvarhanovich ◽  
Almatov Ilkhomjon Mirzabek Ugli ◽  
Somov Uliana Alexandrovna ◽  
...  

Humic substances are the main organic component of soil and water, as well as solid fossil fuels. These important components are formed during the de-composition of plant and animal residues under the influence of abiotic envi-ronmental factors and as a result of the activity of microorganisms. In the future, humic substances are of great interest for medicine, veterinary medicine and plant protection as bioregulators, biostimulants and adaptogens, which deter-mine the normal functioning of various body systems. As a result of enrichment of coal from the Angren deposit, a large amount of waste accumulates, which negatively affects the ecological situation in the region and occupies large areas, in connection with which the question of their processing arises, in particular, to obtain humic preparations and bacterial fertilizers of prolonged action. The iso-lation of humic acids from the dumps was carried out with weak solutions of po-tassium and sodium hydroxides, and then precipitated from the obtained alka-line extracts by acidification with mineral acids to pH 2.0. In the residual cakes, the synthesis of humic acids was carried out by inoculation of an association of microorganisms BK 5 grown on rice flour. In the course of the research it has been found, that optimal separation of humic acid alkali consumption solvents NaOH or KOH is 8g per 100g of the crude product in a ratio of T:F = 1:5 at a temperature of 80° C for 30 minutes.

Agronomy ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1067
Author(s):  
Aleksandra Ukalska-Jaruga ◽  
Romualda Bejger ◽  
Guillaume Debaene ◽  
Bożena Smreczak

The objective of this paper was to investigate the molecular characterization of soil organic matter fractions (humic substances (HS): fulvic acids-FAs, humic acids-HAs, and humins-HNs), which are the most reactive soil components. A wide spectrum of spectroscopic (UV–VIS and VIS–nearIR), as well as electrochemical (zeta potential, particle size diameter, and polydispersity index), methods were applied to find the relevant differences in the behavior, formation, composition, and sorption properties of HS fractions derived from various soils. Soil material (n = 30) used for the study were sampled from the surface layer (0–30 cm) of agricultural soils. FAs and HAs were isolated by sequential extraction in alkaline and acidic solutions, according to the International Humic Substances Society method, while HNs was determined in the soil residue (after FAs and HAs extraction) by mineral fraction digestion using a 0.1M HCL/0.3M HF mixture and DMSO. Our study showed that significant differences in the molecular structures of FAs, Has, and HNs occurred. Optical analysis confirmed the lower molecular weight of FAs with high amount of lignin-like compounds and the higher weighted aliphatic–aromatic structure of HAs. The HNs were characterized by a very pronounced and strong condensed structure associated with the highest molecular weight. HAs and HNs molecules exhibited an abundance of acidic, phenolic, and amine functional groups at the aromatic ring and aliphatic chains, while FAs mainly showed the presence of methyl, methylene, ethenyl, and carboxyl reactive groups. HS was characterized by high polydispersity related with their structure. FAs were characterized by ellipsoidal shape as being associated to the long aliphatic chains, while HAs and HNs revealed a smaller particle diameter and a more spherical shape caused by the higher intermolecular forcing between the particles. The observed trends directly indicate that individual HS fractions differ in behavior, formation, composition, and sorption properties, which reflects their binding potential to other molecules depending on soil properties resulting from their type. The determined properties of individual HS fractions are presented as averaged characteristics over the examined soils with different physico-chemical properties.


2011 ◽  
Vol 6 (No. 1) ◽  
pp. 21-29 ◽  
Author(s):  
H. Khaled ◽  
H.A. Fawy

In this study, the effects were investigated of salinity, foliar and soil applications of humic substances on the growth and mineral nutrients uptake of Corn (Hagein, Fardy10), and the comparison was carried out of the soil and foliar applications of humic acid treatments at different NaCl levels. Soil organic contents are one of the most important parts that they directly affect the soil fertility and textures with their complex and heterogenous structures although they occupy a minor percentage of the soil weight. Humic acids are an important soil component that can improve nutrient availability and impact on other important chemical, biological, and physical properties of soils. The effects of foliar and soil applications of humic substances on the plant growth and some nutrient elements uptake of Corn (Hagein, Fardy10) grown at various salt concentrations were examined. Sodium chloride was added to the soil to obtain 20 and 60mM saline conditions. Solid humus was applied to the soil one month before planting and liquid humic acids were sprayed on the leaves twice on 20<sup>th</sup> and 40<sup>th</sup> day after seedling emergence. The application doses of solid humus were 0, 2 and 4 g/kg and those of liquid humic acids were 0, 0.1 and 0.2%. Salinity negatively affected the growth of corn; it also decreased the dry weight and the uptake of nutrient elements except for Na and Mn. Soil application of humus increased the N uptake of corn while foliar application of humic acids increased the uptake of P, K, Mg,Na,Cu and Zn. Although the effect of interaction between salt and soil humus application was found statistically significant, the interaction effect between salt and foliar humic acids treatment was not found significant. Under salt stress, the first doses of both soil and foliar application of humic substances increased the uptake of nutrients.


2002 ◽  
Vol 757 ◽  
Author(s):  
V. Pirlet ◽  
P. Van Iseghem

ABSTRACTOrganic complexes of actinides are known to occur upon interaction of high level waste glass and Boom Clay which is a potential host rock formation for disposal of high level waste in Belgium. The solubility and mobility of 237Np, one of the most critical radionuclides, can be affected by the high dissolved organic carbon content of the Boom Clay porewater through complexation with the humic substances. The influence of humic substances on the Np behaviour is considered through dissolution tests of Np-doped glasses in Boom Clay water and through fundamental study of the specific interaction between Np(IV) and the humic acids using spectroscopic techniques. High Np(IV) concentrations are found in the glass dissolution tests. These concentrations are higher than what we should expect from the solubility of Np(OH)4, the solubility limiting solid phase predicted under the reducing conditions and pH prevailing in Boom Clay. Studying the specific interaction of Np(IV) with humic acids in Boom Clay porewater, high soluble Np concentrations are also measured and two main tetravalent Np-humate species are observed by UV-Vis spectroscopy. The two species are interpreted in terms of mixed hydroxo-humate complexes, Np(OH)xHA with x = 3 or 4. These species are the most likely species that can form according to the pH working conditions. Using thermodynamic simplified approaches, high complexation constants, i.e. log β131 and log β141 respectively equal to 46 and 51.6, are calculated for these species under the Boom Clay conditions.Comparing the spectroscopic results of the dissolution tests with the study of the interaction of Np(IV) with humic substances, we can conclude that the complexation of Np(IV) with the humic acids may occur and increases the solubility of Np(OH)4 upon interaction of a Np-doped glass and the Boom Clay porewater.


2021 ◽  
Vol 6 ◽  
pp. 22-37
Author(s):  
Zhang Siaobin ◽  
V.V Lebedev ◽  
D.V Miroshnichenko

The article is devoted to the problem of obtaining packaging materials that combine a high level of gas and / or moisture resistance and strength with the ability to quickly decompose without harmful effects on the environment. The purpose of the research described in the article is to study the possibility of making such a material, which, during the period of use, will not only be resistant to the effects of various bacteria, but even prevent their appearance, and upon burial it will be biodegradable. The initial components, namely polyvinyl alcohol, hydroxypropyl methylcellulose, and humic acids of coal origin (as antibacterial additives) were reasonably selected. The modifying effect of humic substances obtained from three different samples of low-grade Ukrainian coal has been studied. In the course of the studies performed, it was found that humic acids of different origins and with different characteristics have a specific effect on the processes of structure formation in solutions of polyvinyl alcohol and hydroxypropyl methylcellulose. In particular, it was shown that in polyvinyl alcohol and methylcellulose solutions with the addition of humic acids that do not contain particles of carbon residues of various degrees of dispersion, an increase in the formation of an ordered structure is observed. Micrographs of solutions of polyvinyl alcohol and hydroxypropyl methylcellulose with humic acids are presented. The peculiarities of the influence of humic substances on the processes of structure formation of solutions of polyvinyl alcohol and hydroxypropyl methylcellulose have been investigated in order to obtain hybrid environmentally friendly biodegradable polymer films. The corresponding experimental-statistical mathematical models have been developed, they describe the dependence of the conditional viscosity and conductivity of polyvinyl alcohol and hydroxypropyl methylcellulose on the content of humic acids, the duration of preparation and one of the characteristics of the raw materials used to obtain humic acids. The corresponding equations are given. Keywords: biodegradable polymer films, coal, humic acids, polyvinyl alcohol, hydroxypropyl methylcellulose, experimental statistical mathematical models Corresponding author Zhang Siaobin, e-mail: [email protected]


2010 ◽  
Vol 22 (5) ◽  
pp. 485-493 ◽  
Author(s):  
Juliana Vanir de Souza Carvalho ◽  
Eduardo de Sá Mendonça ◽  
Rui Tarcísio Barbosa ◽  
Efrain Lázaro Reis ◽  
Paulo Negrais Seabra ◽  
...  

AbstractThis study concerned the fragility of maritime Antarctic soils under increasing temperature, using the C dynamics and structural characteristics of humic substances as indicators. Working with four representative soils from King George Island (Lithic Thiomorphic Cryosol (LTC1 and LTC2), Ornithogenic Cryosol (OG) and Gelic Organosol (ORG)) we evaluated the total organic C and nitrogen contents, the oxidizable C and humic substances. Soil samples were incubated to assess the amount of C potentially mineralizable at temperatures typical of an Antarctic summer (5–14°C). Humic acids showed a higher aliphatic character and a smaller number of condensed aromatic groups, which suggests that these molecules from Antarctic soils are generally less resistant to microbial degradation than humic acids molecules from other regions. Based on 13C NMR spectra of MAS and CP/MAS, samples of soil humic acids of mineral soils (LTC1 and LTC2) have a higher content of aliphatic C, and heteroatom C, with lower levels of carbonyl and aromatic C, when compared with organic matter-rich soils (OG and ORG). Increasing incubation temperature led to a higher rate of mineralizable C in all soils. A sequence of soil fragility was suggested - LTC1 and LTC2 > OG > ORG - which showed a correlation with the Q10 coefficient and the ratio of labile and recalcitrant C fractions of soil organic matter (R2 = 0.83).


1987 ◽  
Vol 11 (3) ◽  
pp. 139-149 ◽  
Author(s):  
Keith D. Bartle ◽  
Alan Pomfret ◽  
Amanda J. Pappin ◽  
Derek G. Mills ◽  
Hunay Evliya

2017 ◽  
Vol 38 (2) ◽  
pp. 125-147 ◽  
Author(s):  
Evgeny Lodygin ◽  
Vasily Beznosikov ◽  
Evgeny Abakumov

Abstract Soils of Russian European North were investigated in terms of stability and quality of organic matter as well as in terms of soils organic matter elemental composi­tion. Therefore, soil humic acids (HAs), extracted from soils of different natural zones of Russian North-East were studied to characterize the degree of soil organic matter stabilization along a zonal gradient. HAs were extracted from soil of different zonal environments of the Komi Republic: south, middle and north taiga as well as south tundra. Data on elemental composition of humic acids and fulvic acids (FAs) extracted from different soil types were obtained to assess humus formation mechanisms in the soils of taiga and tundra of the European North-East of Russia. The specificity of HAs elemental composition are discussed in relation to environmental conditions. The higher moisture degree of taiga soils results in the higher H/C ratio in humic substances. This reflects the reduced microbiologic activity in Albeluvisols sods and subsequent conser­vation of carbohydrate and amino acid fragments in HAs. HAs of tundra soils, shows the H/C values decreasing within the depth of the soils, which reflects increasing of aromatic compounds in HA structure of mineral soil horizons. FAs were more oxidized and contains less carbon while compared with the HAs. Humic acids, extracted from soil of different polar and boreal environments differ in terms of elemental composition winch reflects the climatic and hydrological regimes of humification.


Sign in / Sign up

Export Citation Format

Share Document