scholarly journals Reappraisal-related downregulation of amygdala BOLD activation occurs only during the late trial window

Author(s):  
Jordan E. Pierce ◽  
R. James R. Blair ◽  
Kayla R. Clark ◽  
Maital Neta

AbstractDuring cognitive reappraisal, an individual reinterprets the meaning of an emotional stimulus to regulate the intensity of their emotional response. Prefrontal cortex activity has been found to support reappraisal and is putatively thought to downregulate the amygdala response to these stimuli. The timing of these regulation-related responses during the course of a trial, however, remains poorly understood. In the current fMRI study, participants were instructed to view or reappraise negative images and then rate how negative they felt following each image. The hemodynamic response function was estimated in 11 regions of interest for the entire time course of the trial including image viewing and rating. Notably, within the amygdala there was no evidence of downregulation in the early (picture viewing) window of the trial, only in the late (rating) window, which also correlated with a behavioral measure of reappraisal success. With respect to the prefrontal regions, some (e.g., inferior frontal gyrus) showed reappraisal-related activation in the early window, whereas others (e.g., middle frontal gyrus) showed increased activation primarily in the late window. These results highlight the temporal dynamics of different brain regions during emotion regulation and suggest that the amygdala response to negative images need not be immediately dampened to achieve successful cognitive reappraisal.

2010 ◽  
Vol 103 (3) ◽  
pp. 1569-1579 ◽  
Author(s):  
Maro G. Machizawa ◽  
Roger Kalla ◽  
Vincent Walsh ◽  
Leun J. Otten

Human neuroimaging studies have implicated a number of brain regions in long-term memory formation. Foremost among these is ventrolateral prefrontal cortex. Here, we used double-pulse transcranial magnetic stimulation (TMS) to assess whether the contribution of this part of cortex is crucial for laying down new memories and, if so, to examine the time course of this process. Healthy adult volunteers performed an incidental encoding task (living/nonliving judgments) on sequences of words. In separate series, the task was performed either on its own or while TMS was applied to one of two sites of experimental interest (left/right anterior inferior frontal gyrus) or a control site (vertex). TMS pulses were delivered at 350, 750, or 1,150 ms following word onset. After a delay of 15 min, memory for the items was probed with a recognition memory test including confidence judgments. TMS to all three sites nonspecifically affected the speed and accuracy with which judgments were made during the encoding task. However, only TMS to prefrontal cortex affected later memory performance. Stimulation of left or right inferior frontal gyrus at all three time points reduced the likelihood that a word would later be recognized by a small, but significant, amount (∼4%). These findings indicate that bilateral ventrolateral prefrontal cortex plays an essential role in memory formation, exerting its influence between ≥350 and 1,150 ms after an event is encountered.


2020 ◽  
Author(s):  
Alvaro Murillo ◽  
Ana I Navarro ◽  
Eduardo Puelles ◽  
Yajun Zhang ◽  
Timothy J Petros ◽  
...  

Abstract GluN3A subunits endow N-Methyl-D-Aspartate receptors (NMDARs) with unique biophysical, trafficking, and signaling properties. GluN3A-NMDARs are typically expressed during postnatal development, when they are thought to gate the refinement of neural circuits by inhibiting synapse maturation, and stabilization. Recent work suggests that GluN3A also operates in adult brains to control a variety of behaviors, yet a full spatiotemporal characterization of GluN3A expression is lacking. Here, we conducted a systematic analysis of Grin3a (gene encoding mouse GluN3A) mRNA expression in the mouse brain by combining high-sensitivity colorimetric and fluorescence in situ hybridization with labeling for neuronal subtypes. We find that, while Grin3a mRNA expression peaks postnatally, significant levels are retained into adulthood in specific brain regions such as the amygdala, medial habenula, association cortices, and high-order thalamic nuclei. The time-course of emergence and down-regulation of Grin3a expression varies across brain region, cortical layer of residence, and sensory modality, in a pattern that correlates with previously reported hierarchical gradients of brain maturation and functional specialization. Grin3a is expressed in both excitatory and inhibitory neurons, with strong mRNA levels being a distinguishing feature of somatostatin interneurons. Our study provides a comprehensive map of Grin3a distribution across the murine lifespan and paves the way for dissecting the diverse functions of GluN3A in health and disease.


2020 ◽  
Author(s):  
Obada Al Zoubi ◽  
Masaya Misaki ◽  
Aki Tsuchiyagaito ◽  
Ahmad Mayeli ◽  
Vadim Zotev ◽  
...  

AbstractElectroencephalography microstates (EEG-ms) capture and reflect the spatio-temporal neural dynamics of the brain. A growing literature is employing EEG-ms-based analyses to study various mental illnesses and to evaluate brain mechanisms implicated in cognitive and emotional processing. The spatial and functional interpretation of the EEG-ms is still being investigated. Previous works studied the association of EEG-ms time courses with blood-oxygen-level-dependent (BOLD) functional magnetic resonance imaging (fMRI) signal and suggested an association between EEG-ms and resting-state networks (RSNs). However, the distinctive association between EEG-ms temporal dynamics and brain neuronal activities is still not clear, despite the assumption that EEG-ms are an electrophysiological representation of RSNs activity. Recent works suggest a role for brain spontaneous EEG rhythms in contributing to and modulating canonical EEG-ms topographies and determining their classes (coined A through D) and metrics. This work simultaneously utilized EEG and fMRI to understand the EEG-ms and their properties further. We adopted the canonical EEG-ms analysis to extract three types of regressors for EEG-informed fMRI analyses: EEG-ms direct time courses, temporal activity per microstate, and pairwise temporal transitions among microstates (the latter two coined activity regressors). After convolving EEG-ms regressors with a hemodynamic response function, a generalized linear model whole-brain voxel-wise analysis was conducted to associate EEG-ms regressors with fMRI signals. The direct time course regressors replicated prior findings of the association between the fMRI signal and EEG-ms time courses but to a smaller extent. Notably, EEG-ms activity regressors were mostly anticorrelated with fMRI, including brain regions in the somatomotor, visual, dorsal attention, and ventral attention fMRI networks with no significant overlap for default mode, limbic or frontoparietal networks. A similar pattern emerged in using the transition regressors among microstates but not in self-transitions. The relatively short duration of each EEG-ms and the significant association of EEG-ms activity regressors with fMRI signals suggest that EEG-ms manifests successive transition from one brain functional state to another rather than being associated with specific brain functional state or RSN networks.


2019 ◽  
Author(s):  
Tanya Wen ◽  
John Duncan ◽  
Daniel J Mitchell

AbstractTask episodes consist of sequences of steps that are performed to achieve a goal. We used fMRI to examine neural representation of task identity, component items, and sequential position, focusing on two major cortical systems – the multiple-demand (MD) and default mode networks (DMN). Human participants (20 male, 22 female) learned six tasks each consisting of four steps. Inside the scanner, participants were cued which task to perform and then sequentially identified the target item of each step in the correct order. Univariate time-course analyses indicated that intra-episode progress was tracked by a tonically increasing global response, plus an increasing phasic step response specific to MD regions. Inter-episode boundaries evoked a widespread response at episode onset, plus a marked offset response specific to DMN regions. Representational similarity analysis was used to examine encoding of task identity and component steps. Both networks represented the content and position of individual steps, but the DMN preferentially represented task identity while the MD network preferentially represented step-level information. Thus, although both DMN and MD networks are sensitive to step-level and episode-level information in the context of hierarchical task performance, they exhibit dissociable profiles in terms of both temporal dynamics and representational content. The results suggest collaboration of multiple brain regions in control of multi-step behavior, with MD regions particularly involved in processing the detail of individual steps, and DMN adding representation of broad task context.Significance StatementAchieving one’s goals requires knowing what to do and when. Tasks are typically hierarchical, with smaller steps nested within overarching goals. For effective, flexible behavior, the brain must represent both levels. We contrast response time-courses and information content of two major cortical systems – the multiple-demand (MD) and default mode networks (DMN) – during multi-step task episodes. Both networks are sensitive to step-level and episode-level information, but with dissociable profiles. Intra-episode progress is tracked by tonically increasing global responses, plus MD-specific increasing phasic step responses. Inter-episode boundaries evoke widespread responses at episode onset, plus DMN-specific offset responses. Both networks encode content and position of individual steps, but the DMN and MD networks favor task identity and step-level information respectively.


2017 ◽  
Author(s):  
Roel M. Willems ◽  
Franziska Hartung

Behavioral evidence suggests that engaging with fiction is positively correlated with social abilities. The rationale behind this link is that engaging with fictional narratives offers a ‘training modus’ for mentalizing and empathizing. We investigated the influence of the amount of reading that participants report doing in their daily lives, on connections between brain areas while they listened to literary narratives. Participants (N=57) listened to two literary narratives while brain activation was measured with fMRI. We computed time-course correlations between brain regions, and compared the correlation values from listening to narratives to listening to reversed speech. The between-region correlations were then related to the amount of fiction that participants read in their daily lives. Our results show that amount of fiction reading is related to functional connectivity in areas known to be involved in language and mentalizing. This suggests that reading fiction influences social cognition as well as language skills.


2021 ◽  
Author(s):  
Przemysław Adamczyk ◽  
Martin Jáni ◽  
Tomasz S. Ligeza ◽  
Olga Płonka ◽  
Piotr Błądziński ◽  
...  

AbstractFigurative language processing (e.g. metaphors) is commonly impaired in schizophrenia. In the present study, we investigated the neural activity and propagation of information within neural circuits related to the figurative speech, as a neural substrate of impaired conventional metaphor processing in schizophrenia. The study included 30 schizophrenia outpatients and 30 healthy controls, all of whom were assessed with a functional Magnetic Resonance Imaging (fMRI) and electroencephalography (EEG) punchline-based metaphor comprehension task including literal (neutral), figurative (metaphorical) and nonsense (absurd) endings. The blood oxygenation level-dependent signal was recorded with 3T MRI scanner and direction and strength of cortical information flow in the time course of task processing was estimated with a 64-channel EEG input for directed transfer function. The presented results revealed that the behavioral manifestation of impaired figurative language in schizophrenia is related to the hypofunction in the bilateral fronto-temporo-parietal brain regions (fMRI) and various differences in effective connectivity in the fronto-temporo-parietal circuit (EEG). Schizophrenia outpatients showed an abnormal pattern of connectivity during metaphor processing which was related to bilateral (but more pronounced at the left hemisphere) hypoactivation of the brain. Moreover, we found reversed lateralization patterns, i.e. a rightward-shifted pattern during metaphor processing in schizophrenia compared to the control group. In conclusion, the presented findings revealed that the impairment of the conventional metaphor processing in schizophrenia is related to the bilateral brain hypofunction, which supports the evidence on reversed lateralization of the language neural network and the existence of compensatory recruitment of alternative neural circuits in schizophrenia.


2021 ◽  
pp. 109442812110029
Author(s):  
Eric Quintane ◽  
Martin Wood ◽  
John Dunn ◽  
Lucia Falzon

Extant research in organizational networks has provided critical insights into understanding the benefits of occupying a brokerage position. More recently, researchers have moved beyond the brokerage position to consider the brokering processes (arbitration and collaboration) brokers engage in and their implications for performance. However, brokering processes are typically measured using scales that reflect individuals’ orientation toward engaging in a behavior, rather than the behavior itself. In this article, we propose a measure that captures the behavioral process of brokering. The measure indicates the extent to which actors engage in arbitration versus collaboration based on sequences of time stamped relational events, such as emails, message boards, and recordings of meetings. We demonstrate the validity of our measure as well as its predictive ability. By leveraging the temporal information inherent in sequences of relational events, our behavioral measure of brokering creates opportunities for researchers to explore the dynamics of brokerage and their impact on individuals, and also paves the way for a systematic examination of the temporal dynamics of networks.


2021 ◽  
Author(s):  
Adeline Jabès ◽  
Giuliana Klencklen ◽  
Paolo Ruggeri ◽  
Christoph M. Michel ◽  
Pamela Banta Lavenex ◽  
...  

AbstractAlterations of resting-state EEG microstates have been associated with various neurological disorders and behavioral states. Interestingly, age-related differences in EEG microstate organization have also been reported, and it has been suggested that resting-state EEG activity may predict cognitive capacities in healthy individuals across the lifespan. In this exploratory study, we performed a microstate analysis of resting-state brain activity and tested allocentric spatial working memory performance in healthy adult individuals: twenty 25–30-year-olds and twenty-five 64–75-year-olds. We found a lower spatial working memory performance in older adults, as well as age-related differences in the five EEG microstate maps A, B, C, C′ and D, but especially in microstate maps C and C′. These two maps have been linked to neuronal activity in the frontal and parietal brain regions which are associated with working memory and attention, cognitive functions that have been shown to be sensitive to aging. Older adults exhibited lower global explained variance and occurrence of maps C and C′. Moreover, although there was a higher probability to transition from any map towards maps C, C′ and D in young and older adults, this probability was lower in older adults. Finally, although age-related differences in resting-state EEG microstates paralleled differences in allocentric spatial working memory performance, we found no evidence that any individual or combination of resting-state EEG microstate parameter(s) could reliably predict individual spatial working memory performance. Whether the temporal dynamics of EEG microstates may be used to assess healthy cognitive aging from resting-state brain activity requires further investigation.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ryo Kitada ◽  
Jinhwan Kwon ◽  
Ryuichi Doizaki ◽  
Eri Nakagawa ◽  
Tsubasa Tanigawa ◽  
...  

AbstractUnlike the assumption of modern linguistics, there is non-arbitrary association between sound and meaning in sound symbolic words. Neuroimaging studies have suggested the unique contribution of the superior temporal sulcus to the processing of sound symbolism. However, because these findings are limited to the mapping between sound symbolism and visually presented objects, the processing of sound symbolic information may also involve the sensory-modality dependent mechanisms. Here, we conducted a functional magnetic resonance imaging experiment to test whether the brain regions engaged in the tactile processing of object properties are also involved in mapping sound symbolic information with tactually perceived object properties. Thirty-two healthy subjects conducted a matching task in which they judged the congruency between softness perceived by touch and softness associated with sound symbolic words. Congruency effect was observed in the orbitofrontal cortex, inferior frontal gyrus, insula, medial superior frontal gyrus, cingulate gyrus, and cerebellum. This effect in the insula and medial superior frontal gyri was overlapped with softness-related activity that was separately measured in the same subjects in the tactile experiment. These results indicate that the insula and medial superior frontal gyrus play a role in processing sound symbolic information and relating it to the tactile softness information.


Sign in / Sign up

Export Citation Format

Share Document