scholarly journals Natural products in the predatory defence of the filamentous fungal pathogen Aspergillus fumigatus

2021 ◽  
Vol 17 ◽  
pp. 1814-1827
Author(s):  
Jana M Boysen ◽  
Nauman Saeed ◽  
Falk Hillmann

The kingdom of fungi comprises a large and highly diverse group of organisms that thrive in diverse natural environments. One factor to successfully confront challenges in their natural habitats is the capability to synthesize defensive secondary metabolites. The genetic potential for the production of secondary metabolites in fungi is high and numerous potential secondary metabolite gene clusters have been identified in sequenced fungal genomes. Their production may well be regulated by specific ecological conditions, such as the presence of microbial competitors, symbionts or predators. Here we exemplarily summarize our current knowledge on identified secondary metabolites of the pathogenic fungus Aspergillus fumigatus and their defensive function against (microbial) predators.

2020 ◽  
Author(s):  
Jacob L. Steenwyk ◽  
Matthew E. Mead ◽  
Sonja L. Knowles ◽  
Huzefa A. Raja ◽  
Christopher D. Roberts ◽  
...  

AbstractAspergillus fumigatus is a major human pathogen that causes hundreds of thousands of infections yearly with high mortality rates. In contrast, Aspergillus fischeri and the recently described Aspergillus oerlinghausenensis, the two species most closely related to A. fumigatus, are not known to be pathogenic. Some of the “cards of virulence” that A. fumigatus possesses are secondary metabolites that impair the host immune system, protect from host immune cell attacks, or acquire key nutrients. Secondary metabolites and the biosynthetic gene clusters (BGCs) that typically encode them often vary within and between fungal species. To gain insight into whether secondary metabolism-associated cards of virulence vary between A. fumigatus, A. oerlinghausenensis, and A. fischeri, we conducted extensive genomic and secondary metabolite profiling analyses. By analyzing multiple A. fumigatus, one A. oerlinghausenensis, and multiple A. fischeri strains, we identified both conserved and diverged secondary metabolism-associated cards of virulence. For example, we found that all species and strains examined biosynthesized the major virulence factor gliotoxin, consistent with the conservation of the gliotoxin BGC across genomes. However, species differed in their biosynthesis of fumagillin and pseurotin, both contributors to host tissue damage during invasive aspergillosis; these differences were reflected in sequence divergence of the intertwined fumagillin/pseurotin BGCs across genomes. These results delineate the similarities and differences in secondary metabolism-associated cards of virulence between a major fungal pathogen and its nonpathogenic closest relatives, shedding light into the genetic and phenotypic changes associated with the evolution of fungal pathogenicity.ImportanceThe major fungal pathogen Aspergillus fumigatus kills tens of thousands each year. In contrast, the two closest relatives of A. fumigatus, namely Aspergillus fischeri and Aspergillus oerlinghausenensis, are not considered pathogenic. A. fumigatus virulence stems, partly, from its ability to produce small molecules called secondary metabolites that have potent activities during infection. In this study, we examined whether A. fumigatus secondary metabolites and the metabolic pathways involved in their production are conserved in A. oerlinghausenensis and A. fischeri. We found that the nonpathogenic close relatives of A. fumigatus produce some, but not all, secondary metabolites thought to contribute to the success of A. fumigatus in causing human disease and that these similarities and differences were reflected in the underlying metabolic pathways involved in their biosynthesis. Compared to its nonpathogenic close relatives, A. fumigatus produces a distinct cocktail of secondary metabolites, which likely contributes to these organisms’ vastly different potentials to cause human disease. More broadly, the study of nonpathogenic organisms that have virulence-related traits, but are not currently considered agents of human disease, may facilitate the prediction of species capable of posing future threats to human health.


mSphere ◽  
2019 ◽  
Vol 4 (1) ◽  
Author(s):  
Matthew E. Mead ◽  
Sonja L. Knowles ◽  
Huzefa A. Raja ◽  
Sarah R. Beattie ◽  
Caitlin H. Kowalski ◽  
...  

ABSTRACTAspergillus fischeriis closely related toAspergillus fumigatus, the major cause of invasive mold infections. Even thoughA. fischeriis commonly found in diverse environments, including hospitals, it rarely causes invasive disease. WhyA. fischericauses less human disease thanA. fumigatusis unclear. A comparison ofA. fischeriandA. fumigatusfor pathogenic, genomic, and secondary metabolic traits revealed multiple differences in pathogenesis-related phenotypes. We observed thatA. fischeriNRRL 181 is less virulent thanA. fumigatusstrain CEA10 in multiple animal models of disease, grows slower in low-oxygen environments, and is more sensitive to oxidative stress. Strikingly, the observed differences for some traits are of the same order of magnitude as those previously reported betweenA. fumigatusstrains. In contrast, similar to what has previously been reported, the two species exhibit high genomic similarity; ∼90% of theA. fumigatusproteome is conserved inA. fischeri, including 48/49 genes known to be involved inA. fumigatusvirulence. However, only 10/33A. fumigatusbiosynthetic gene clusters (BGCs) likely involved in secondary metabolite production are conserved inA. fischeriand only 13/48A. fischeriBGCs are conserved inA. fumigatus. Detailed chemical characterization ofA. fischericultures grown on multiple substrates identified multiple secondary metabolites, including two new compounds and one never before isolated as a natural product. Additionally, anA. fischerideletion mutant oflaeA, a master regulator of secondary metabolism, produced fewer secondary metabolites and in lower quantities, suggesting that regulation of secondary metabolism is at least partially conserved. These results suggest that the nonpathogenicA. fischeripossesses many of the genes important forA. fumigatuspathogenicity but is divergent with respect to its ability to thrive under host-relevant conditions and its secondary metabolism.IMPORTANCEAspergillus fumigatusis the primary cause of aspergillosis, a devastating ensemble of diseases associated with severe morbidity and mortality worldwide.A. fischeriis a close relative ofA. fumigatusbut is not generally observed to cause human disease. To gain insights into the underlying causes of this remarkable difference in pathogenicity, we compared two representative strains (one from each species) for a range of pathogenesis-relevant biological and chemical characteristics. We found that disease progression in multipleA. fischerimouse models was slower and caused less mortality thanA. fumigatus. Remarkably, the observed differences betweenA. fischeriandA. fumigatusstrains examined here closely resembled those previously described for two commonly studiedA. fumigatusstrains, AF293 and CEA10.A. fischeriandA. fumigatusexhibited different growth profiles when placed in a range of stress-inducing conditions encountered during infection, such as low levels of oxygen and the presence of chemicals that induce the production of reactive oxygen species. We also found that the vast majority ofA. fumigatusgenes known to be involved in virulence are conserved inA. fischeri, whereas the two species differ significantly in their secondary metabolic pathways. These similarities and differences that we report here are the first step toward understanding the evolutionary origin of a major fungal pathogen.


2021 ◽  
Vol 12 ◽  
Author(s):  
Janina Leinberger ◽  
Jonas Holste ◽  
Boyke Bunk ◽  
Heike M. Freese ◽  
Cathrin Spröer ◽  
...  

Secondary metabolites are key components in microbial ecology by mediating interactions between bacteria and their environment, neighboring species or host organisms. Bioactivities can be beneficial for both interaction partners or provide a competitive advantage only for the producer. Colonizers of confined habitats such as biofilms are known as prolific producers of a great number of bioactive secondary metabolites and are a potential source for novel compounds. We investigated the strain Paracoccus marcusii CP157, which originates from the biofilm on the carapace of a shell disease-affected Cancer pagurus specimen, for its potential to produce bioactive secondary metabolites. Its closed genome contains 22 extrachromosomal elements and several gene clusters potentially involved in biosynthesis of bioactive polyketides, bacteriocins, and non-ribosomal peptides. Culture extracts of CP157 showed antagonistic activities against bacteria from different phyla, but also against microalgae and crustacean larvae. Different HPLC-fractions of CP157 culture extracts had antibacterial properties, indicating that several bioactive compounds are produced by CP157. The bioactive extract contains several small, antibacterial compounds that partially withstand elevated temperatures, extreme pH values and exposure to proteolytic enzymes, providing high stability toward environmental conditions in the natural habitat of CP157. Further, screening of 17 Paracoccus spp. revealed that antimicrobial activity, hemolysis and production of N-acyl homoserine lactones are common features within the genus. Taking into account the large habitat diversity and phylogenetic distance of the tested strains, we hypothesize that bioactive secondary metabolites play a central role in the ecology of Paracoccus spp. in their natural environments.


2019 ◽  
Author(s):  
Carolyn Graham-Taylor ◽  
Lars G Kamphuis ◽  
Mark Derbyshire

Abstract Background The broad host range pathogen Sclerotinia sclerotiorum infects over 400 plant species and causes substantial yield losses in crops worldwide. Secondary metabolites are known to play important roles in the virulence of plant pathogens, but little is known about the secondary metabolite repertoire of S. sclerotiorum. In this study, we predicted secondary metabolite biosynthetic gene clusters in the genome of S. sclerotiorum and analysed their expression during infection of Brassica napus using an existing transcriptome data set. We also investigated their sequence diversity among a panel of 25 previously published S. sclerotiorum isolate genomes.Results We identified 80 putative secondary metabolite clusters. Over half of the clusters contained at least three transcriptionally coregulated genes. Comparative genomics revealed clusters homologous to clusters in the closely related plant pathogen Botrytis cinerea for production of carotenoids, hydroxamate siderophores, DHN melanin and botcinic acid. We also identified putative phytotoxin clusters that can potentially produce the polyketide sclerin and an epipolythiodioxopiperazine. Secondary metabolite clusters were enriched in subtelomeric genomic regions, and those containing paralogues showed a particularly strong association with repeats. The positional bias we identified was borne out by intraspecific comparisons that revealed putative secondary metabolite genes suffered more presence / absence polymorphisms and exhibited a significantly higher sequence diversity than other genes.Conclusions These data suggest that S. sclerotiorum produces numerous secondary metabolites during plant infection and that their gene clusters undergo enhanced rates of mutation, duplication and recombination in subtelomeric regions. The microevolutionary regimes leading to S. sclerotiorum secondary metabolite diversity have yet to be elucidated. Several potential phytotoxins documented in this study provide the basis for future functional analyses.


2016 ◽  
Vol 371 (1709) ◽  
pp. 20160023 ◽  
Author(s):  
Elaine Bignell ◽  
Timothy C. Cairns ◽  
Kurt Throckmorton ◽  
William C. Nierman ◽  
Nancy P. Keller

Aspergillus fumigatus is a versatile fungus able to successfully exploit diverse environments from mammalian lungs to agricultural waste products. Among its many fitness attributes are dozens of genetic loci containing biosynthetic gene clusters (BGCs) producing bioactive small molecules (often referred to as secondary metabolites or natural products) that provide growth advantages to the fungus dependent on environment. Here we summarize the current knowledge of these BGCs—18 of which can be named to product — their expression profiles in vivo , and which BGCs may enhance virulence of this opportunistic human pathogen. Furthermore, we find extensive evidence for the presence of many of these BGCs, or similar BGCs, in distantly related genera including the emerging pathogen Pseudogymnoascus destructans , the causative agent of white-nose syndrome in bats, and suggest such BGCs may be predictive of pathogenic potential in other fungi. This article is part of the themed issue ‘Tackling emerging fungal threats to animal health, food security and ecosystem resilience’.


2021 ◽  
Author(s):  
M. Amine Hassani ◽  
Ernest Oppong-Danquah ◽  
Alice Feurty ◽  
Deniz Tasdemir ◽  
Eva H Stukenbrock

The genome of the wheat pathogenic fungus, Zymoseptoria tritici, represents extensive presence-absence variation in gene content. Here, we addressed variation in biosynthetic gene clusters (BGCs) content and biochemical profiles among three isolates. We analysed secondary metabolite properties based on genome, transcriptome and metabolome data. The isolates represent highly distinct genome architecture, but harbor similar repertoire of BGCs. Expression profiles for most BGCs show comparable patterns of regulation among the isolates, suggesting a conserved 'biochemical infection program'. For all three isolates, we observed a strong up-regulation of an abscisic acid (ABA) gene cluster during biotrophic host colonization, indicating that Z. tritici potentially interfere with host defenses by the biosynthesis of this phytohormone. Further, during in vitro growth the isolates show similar metabolomes congruent with the predicted BGC content. We assessed if secondary metabolite production is regulated by histone methylation using a mutant impaired in formation of facultative heterochromatin (H3K27me3). In contrast to other ascomycete fungi, chromatin modifications play a less prominent role in regulation of secondary metabolites. In summary, we show that Z. tritici has a conserved program of secondary metabolite production contrasting the immense variation in effector expression, some of these metabolites might play a key role during host colonization.


2020 ◽  
Vol 2 (7A) ◽  
Author(s):  
Gillian Halket ◽  
Paul Herron ◽  
Carol Munro

To combat the problem of antimicrobial resistance, we are testing the hypothesis that thermophilic Actinobacteria produce novel antimicrobials at higher temperatures, with potential activity against life-threatening infections like invasive aspergillosis caused by the fungus Aspergillus fumigatus. Samples from “windrows” at a green waste processing facility yielded 36 potential thermophilic Actinobacterial strains isolated at 50oC, as well as strains of A. fumigatus. The phylogeny and identities of the bacterial strains were determined by 16S rDNA sequencing. Three strains - DJT 15 Streptomyces thermoviolaceus subsp. apingens, DJT 32 Saccharomonospora viridis and DJT 36 Saccharomonospora glauca - have shown inhibitory activity in bioassays against the ESKAPE pathogens, two of which (DJT 32 and 36) also inhibited the growth of the fungal pathogen Aspergillus fumigatus isolated from the same compost. Strain DJT 32 has also been shown to have an inhibitory effect against azole resistant human pathogenic strains of A. fumigatus. Whole genome Sequencing data of DJT 15 and 32 have been used to identify possible biosynthetic gene clusters for antimicrobial compounds (novel or otherwise) through AntiSmash analysis. Alongside this, bioactive compounds have been extracted from broth cultures of each strain using HP-20 Resin method, and the metabolites will be identified using LC:MS combined with metabolic profiling. Extraction and identification of novel metabolites will provide a path for the development of new antimicrobials for clinical use. This study has shown that thermophilic Actinobacteria produce antimicrobial compounds at higher temperatures, against Staphylococcus aureus and against the highly pathogenic fungus, A. fumigatus.


mSystems ◽  
2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Heiko T. Kiesewalter ◽  
Carlos N. Lozano-Andrade ◽  
Mario Wibowo ◽  
Mikael L. Strube ◽  
Gergely Maróti ◽  
...  

ABSTRACT Bacillus subtilis produces a wide range of secondary metabolites providing diverse plant growth-promoting and biocontrol abilities. These secondary metabolites include nonribosomal peptides with strong antimicrobial properties, causing either cell lysis, pore formation in fungal membranes, inhibition of certain enzymes, or bacterial protein synthesis. However, the natural products of B. subtilis are mostly studied either in laboratory strains or in individual isolates, and therefore, a comparative overview of secondary metabolites from various environmental B. subtilis strains is missing. In this study, we isolated 23 B. subtilis strains from 11 sampling sites, compared the fungal inhibition profiles of wild types and their nonribosomal peptide mutants, followed the production of targeted lipopeptides, and determined the complete genomes of 13 soil isolates. We discovered that nonribosomal peptide production varied among B. subtilis strains coisolated from the same soil samples. In vitro antagonism assays revealed that biocontrol properties depend on the targeted plant pathogenic fungus and the tested B. subtilis isolate. While plipastatin alone is sufficient to inhibit Fusarium spp., a combination of plipastatin and surfactin is required to hinder growth of Botrytis cinerea. Detailed genomic analysis revealed that altered nonribosomal peptide production profiles in specific isolates are due to missing core genes, nonsense mutation, or potentially altered gene regulation. Our study combines microbiological antagonism assays with chemical nonribosomal peptide detection and biosynthetic gene cluster predictions in diverse B. subtilis soil isolates to provide a broader overview of the secondary metabolite chemodiversity of B. subtilis. IMPORTANCE Secondary or specialized metabolites with antimicrobial activities define the biocontrol properties of microorganisms. Members of the Bacillus genus produce a plethora of secondary metabolites, of which nonribosomally produced lipopeptides in particular display strong antifungal activity. To facilitate the prediction of the biocontrol potential of new Bacillus subtilis isolates, we have explored the in vitro antifungal inhibitory profiles of recent B. subtilis isolates, combined with analytical natural product chemistry, mutational analysis, and detailed genome analysis of biosynthetic gene clusters. Such a comparative analysis helped to explain why selected B. subtilis isolates lack the production of certain secondary metabolites.


2018 ◽  
Vol 115 (4) ◽  
pp. E753-E761 ◽  
Author(s):  
Inge Kjærbølling ◽  
Tammi C. Vesth ◽  
Jens C. Frisvad ◽  
Jane L. Nybo ◽  
Sebastian Theobald ◽  
...  

The fungal genus ofAspergillusis highly interesting, containing everything from industrial cell factories, model organisms, and human pathogens. In particular, this group has a prolific production of bioactive secondary metabolites (SMs). In this work, four diverseAspergillusspecies (A. campestris,A. novofumigatus,A. ochraceoroseus, andA. steynii) have been whole-genome PacBio sequenced to provide genetic references in threeAspergillussections.A. taichungensisandA. candidusalso were sequenced for SM elucidation. ThirteenAspergillusgenomes were analyzed with comparative genomics to determine phylogeny and genetic diversity, showing that each presented genome contains 15–27% genes not found in other sequenced Aspergilli. In particular,A. novofumigatuswas compared with the pathogenic speciesA. fumigatus. This suggests thatA. novofumigatuscan produce most of the same allergens, virulence, and pathogenicity factors asA. fumigatus, suggesting thatA. novofumigatuscould be as pathogenic asA. fumigatus. Furthermore, SMs were linked to gene clusters based on biological and chemical knowledge and analysis, genome sequences, and predictive algorithms. We thus identify putative SM clusters for aflatoxin, chlorflavonin, and ochrindol inA. ochraceoroseus,A. campestris, andA. steynii, respectively, and novofumigatonin,ent-cycloechinulin, andepi-aszonalenins inA. novofumigatus. Our study delivers six fungal genomes, showing the large diversity found in theAspergillusgenus; highlights the potential for discovery of beneficial or harmful SMs; and supports reports ofA. novofumigatuspathogenicity. It also shows how biological, biochemical, and genomic information can be combined to identify genes involved in the biosynthesis of specific SMs.


BMC Genomics ◽  
2020 ◽  
Vol 21 (1) ◽  
Author(s):  
Carolyn Graham-Taylor ◽  
Lars G. Kamphuis ◽  
Mark C. Derbyshire

Abstract Background The broad host range pathogen Sclerotinia sclerotiorum infects over 400 plant species and causes substantial yield losses in crops worldwide. Secondary metabolites are known to play important roles in the virulence of plant pathogens, but little is known about the secondary metabolite repertoire of S. sclerotiorum. In this study, we predicted secondary metabolite biosynthetic gene clusters in the genome of S. sclerotiorum and analysed their expression during infection of Brassica napus using an existing transcriptome data set. We also investigated their sequence diversity among a panel of 25 previously published S. sclerotiorum isolate genomes. Results We identified 80 putative secondary metabolite clusters. Over half of the clusters contained at least three transcriptionally coregulated genes. Comparative genomics revealed clusters homologous to clusters in the closely related plant pathogen Botrytis cinerea for production of carotenoids, hydroxamate siderophores, DHN melanin and botcinic acid. We also identified putative phytotoxin clusters that can potentially produce the polyketide sclerin and an epipolythiodioxopiperazine. Secondary metabolite clusters were enriched in subtelomeric genomic regions, and those containing paralogues showed a particularly strong association with repeats. The positional bias we identified was borne out by intraspecific comparisons that revealed putative secondary metabolite genes suffered more presence / absence polymorphisms and exhibited a significantly higher sequence diversity than other genes. Conclusions These data suggest that S. sclerotiorum produces numerous secondary metabolites during plant infection and that their gene clusters undergo enhanced rates of mutation, duplication and recombination in subtelomeric regions. The microevolutionary regimes leading to S. sclerotiorum secondary metabolite diversity have yet to be elucidated. Several potential phytotoxins documented in this study provide the basis for future functional analyses.


Sign in / Sign up

Export Citation Format

Share Document