ÇELİK DİRSEK ÜRETİMİNİN SONLU ELEMANLAR ANALİZİ YÖNTEMİ İLE MODELLENMESİ VE ÜRETİM PARAMETRELERİNİN OPTİMİZASYONU

Author(s):  
Mustafa Ay ◽  
Selim Hartomacıoğlu ◽  
Mühendisi Murat Manav ◽  
Şaban Saraç

With the advancement of today's technologies, parts of pipe and elbow elements, natural gas pipelines, petrochemicals, machinery manufacturing industry, water distribution and flow systems, sewage systems, foundation piles, shipbuilding industry, nurse containers, aviation, space and defense industry, pipe networks, refineries , steel structures, tube and pipe engineering, etc. widely used in areas. In this study, extrusion method, which is one of the cold forming methods of elbow pipes, has been investigated. When the literature is examined, the production conditions of steel pipes and the problems that occur in production have been examined by different people and suggestions have been made. In this study, the production process of AISI 316L (EN 1.4404) quality stainless steel elbow pipes has been investigated. The mold design model created with the Solidworks program was transferred to the non-linear finite element analysis software ANSYS program for simulations. The process was modeled and simulated in the transient structural analysis section of the ANSYS program. In the process of transforming the pipe into an elbow product, we have learned about the stress distributions and obtaining the total deformation changes on the elbow. The parameters of the production process have been optimized by comparing the work done in the simulation and experimental data. In this way, cost-effective production is aimed by minimizing production costs. The data was extracted by simulating the production environment and conditions.

2015 ◽  
Vol 9 (5) ◽  
pp. 558-566 ◽  
Author(s):  
Alexander Schöch ◽  
◽  
Alessandro Salvadori ◽  
Ivo Germann ◽  
Silvano Balemi ◽  
...  

The increasing quality expectations and the global competition push manufacturing industry to adopt strategies of lean manufacturing and precision engineering. In order to reach these aims it is necessary that the measuring process is integrated in the production chain to provide timely feedback for process control. Nowadays, however, forged products are typically measured after the cool-down process, which can take several hours. The advantages obtainable if forgings would be measured online are clear: deviations in the production process would be recognized earlier and the production process could be promptly adjusted. On-line measurement capabilities have the potential to reduce overall production costs and consequently are of interest to many forging industries, including those producing complex products such as turbine blades. Under these circumstances, the HOTGAUGE project was initiated: an international EUROSTARS project with the goal to develop a measuring system, capable of measuring freeform shaped parts at elevated temperature (approx. 800°C) directly after the forging step. The output of the measuring system is a 3D model of the hot part including temperature information. The 3D coordinate measuring system is composed by two main subsystems: a 2D laser-triangulation system capable to scan a complete section of the part, and a moving platform, which moves the part through the measuring plane. The architecture and the components of the measurement system as well as measurement results are presented in this paper.


2012 ◽  
Vol 516 ◽  
pp. 102-107 ◽  
Author(s):  
Chin Wei Liu ◽  
You Lun Chen ◽  
Wen Chien Wu

An electrochemical machining (ECM) manufacturing system with a reconfigurable manufacturing system (RMS) is proposed for machining materials with high hardness and with unique contours or specific edge geometries that are normally unobtainable by conventional machining methods. In the manufacturing industry, ECM systems must usually be custom designed to meet customer needs. An RMS reduces engineering time and production costs by enabling rapid and cost-effective conversion of manufacturing machines, systems, and controls in response to the market changes or customer demands. This study proposes a design method for constructing a hierarchical structure control module for synchronously reconfiguring controls and machining characteristics in a reconfigurable machine tool.


The choice of cost-effective method of anticorrosive protection of steel structures is an urgent and time consuming task, considering the significant number of protection ways, differing from each other in the complex of technological, physical, chemical and economic characteristics. To reduce the complexity of solving this problem, the author proposes a computational tool that can be considered as a subsystem of computer-aided design and used at the stage of variant and detailed design of steel structures. As a criterion of the effectiveness of the anti-corrosion protection method, the cost of the protective coating during the service life is accepted. The analysis of existing methods of steel protection against corrosion is performed, the possibility of their use for the protection of the most common steel structures is established, as well as the estimated period of effective operation of the coating. The developed computational tool makes it possible to choose the best method of protection of steel structures against corrosion, taking into account the operating conditions of the protected structure and the possibility of using a protective coating.


2011 ◽  
Vol 39 (3) ◽  
pp. 193-209 ◽  
Author(s):  
H. Surendranath ◽  
M. Dunbar

Abstract Over the last few decades, finite element analysis has become an integral part of the overall tire design process. Engineers need to perform a number of different simulations to evaluate new designs and study the effect of proposed design changes. However, tires pose formidable simulation challenges due to the presence of highly nonlinear rubber compounds, embedded reinforcements, complex tread geometries, rolling contact, and large deformations. Accurate simulation requires careful consideration of these factors, resulting in the extensive turnaround time, often times prolonging the design cycle. Therefore, it is extremely critical to explore means to reduce the turnaround time while producing reliable results. Compute clusters have recently become a cost effective means to perform high performance computing (HPC). Distributed memory parallel solvers designed to take advantage of compute clusters have become increasingly popular. In this paper, we examine the use of HPC for various tire simulations and demonstrate how it can significantly reduce simulation turnaround time. Abaqus/Standard is used for routine tire simulations like footprint and steady state rolling. Abaqus/Explicit is used for transient rolling and hydroplaning simulations. The run times and scaling data corresponding to models of various sizes and complexity are presented.


Author(s):  
Nguyen Thi Kim Huyen

Applying the Material Flows Cost Accounting method in Thai Nguyen steel enterprises is one of the solutions to improve the efficiency in the production process, using input materials, and environmental performance, as well as to measure more correctly the production costs based on the change of the price calculation basic. Identifying the factors which affect the decision on applying MFCA to the accounting process of Thai Nguyen steel production enterprises by a direct survey is carried out with 119 accountants and managers working at 13 steel enterprises. The results show that applying MFCA to the accounting process in these enterprises depends on the strategies, capacities, the accounting system of those enterprises, and the system of legal documents related to environmental accounting.


Alloy Digest ◽  
2009 ◽  
Vol 58 (3) ◽  

Abstract Domex 550MC is a hot-rolled, high-strength low-alloy (HSLA) steel for cold forming operations. It is available in thicknesses of 2.00-12.80 mm. The alloy meets or exceeds the requirements of S550MC in EN 10149-2. Applications include a wide range of fabricated components and steel structures, including truck chassis, crane booms, and earthmoving machines. This datasheet provides information on composition, physical properties, tensile properties, and bend strength as well as fatigue. It also includes information on forming, heat treating, and joining. Filing Code: SA-594. Producer or source: SSAB Swedish Steel Inc.


Author(s):  
Paul Oehlmann ◽  
Paul Osswald ◽  
Juan Camilo Blanco ◽  
Martin Friedrich ◽  
Dominik Rietzel ◽  
...  

AbstractWith industries pushing towards digitalized production, adaption to expectations and increasing requirements for modern applications, has brought additive manufacturing (AM) to the forefront of Industry 4.0. In fact, AM is a main accelerator for digital production with its possibilities in structural design, such as topology optimization, production flexibility, customization, product development, to name a few. Fused Filament Fabrication (FFF) is a widespread and practical tool for rapid prototyping that also demonstrates the importance of AM technologies through its accessibility to the general public by creating cost effective desktop solutions. An increasing integration of systems in an intelligent production environment also enables the generation of large-scale data to be used for process monitoring and process control. Deep learning as a form of artificial intelligence (AI) and more specifically, a method of machine learning (ML) is ideal for handling big data. This study uses a trained artificial neural network (ANN) model as a digital shadow to predict the force within the nozzle of an FFF printer using filament speed and nozzle temperatures as input data. After the ANN model was tested using data from a theoretical model it was implemented to predict the behavior using real-time printer data. For this purpose, an FFF printer was equipped with sensors that collect real time printer data during the printing process. The ANN model reflected the kinematics of melting and flow predicted by models currently available for various speeds of printing. The model allows for a deeper understanding of the influencing process parameters which ultimately results in the determination of the optimum combination of process speed and print quality.


Energies ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3659
Author(s):  
Andrzej Szajna ◽  
Mariusz Kostrzewski ◽  
Krzysztof Ciebiera ◽  
Roman Stryjski ◽  
Waldemar Woźniak

Industry 4.0, a term invented by Wolfgang Wahlster in Germany, is celebrating its 10th anniversary in 2021. Still, the digitalization of the production environment is one of the hottest topics in the computer science departments at universities and companies. Optimization of production processes or redefinition of the production concepts is meaningful in light of the current industrial and research agendas. Both the mentioned optimization and redefinition are considered in numerous subtopics and technologies. One of the most significant topics in these areas is the newest findings and applications of artificial intelligence (AI)—machine learning (ML) and deep convolutional neural networks (DCNNs). The authors invented a method and device that supports the wiring assembly in the control cabinet production process, namely, the Wire Label Reader (WLR) industrial system. The implementation of this device was a big technical challenge. It required very advanced IT technologies, ML, image recognition, and DCNN as well. This paper focuses on an in-depth description of the underlying methodology of this device, its construction, and foremostly, the assembly industrial processes, through which this device is implemented. It was significant for the authors to validate the usability of the device within mentioned production processes and to express both advantages and challenges connected to such assembly process development. The authors noted that in-depth studies connected to the effects of AI applications in the presented area are sparse. Further, the idea of the WLR device is presented while also including results of DCNN training (with recognition results of 99.7% although challenging conditions), the device implementation in the wire assembly production process, and its users’ opinions. The authors have analyzed how the WLR affects assembly process time and energy consumption, and accordingly, the advantages and challenges of the device. Among the most impressive results of the WLR implementation in the assembly process one can be mentioned—the device ensures significant process time reduction regardless of the number of characters printed on a wire.


Author(s):  
Rama Subba Reddy Gorla

Heat transfer from a nuclear fuel rod bumper support was computationally simulated by a finite element method and probabilistically evaluated in view of the several uncertainties in the performance parameters. Cumulative distribution functions and sensitivity factors were computed for overall heat transfer rates due to the thermodynamic random variables. These results can be used to identify quickly the most critical design variables in order to optimize the design and to make it cost effective. The analysis leads to the selection of the appropriate measurements to be used in heat transfer and to the identification of both the most critical measurements and the parameters.


Sign in / Sign up

Export Citation Format

Share Document