scholarly journals APPLICATION OF TRANSPARENT INSULATION MATERIALS TO BUILDINGS HEATING IN PASSIVE SOLAR SYSTEMS

2002 ◽  
Vol 8 (4) ◽  
pp. 286-290
Author(s):  
Halina Koczyk ◽  
Andrzej Górka

The aim of this paper is to present a numerical model, based on the finite difference method and able to describe the heat transfer in a room with indirect passive solar system in form of transparent insulation material (TIM) wall. Results of numerical calculations of thermal fields in TIM wall, in room with passive solar system, under climatic conditions of typical meteorological year for Poznan, are presented. Also the estimation of energy savings for selected rooms with TIM wall is given. Construction of a numerical model of building includes calculation of distribution of temperatures in all walls forming the enclosure, composition of system of energy balance equations for nodes representative of rooms and its solution. In numerical calculations of the thermal states of rooms with transparent walls, an analysis of respective components of thermal balance there has been conducted, in conjunction with required radiator heating power of automated heating installation—coacting with passive solar systems (PSS), as well as variability of η in the comparative year including months from September to April.

2017 ◽  
Vol 12 (2) ◽  
pp. 79-94 ◽  
Author(s):  
Fehmi Görkem Üçtuğ ◽  
Semra Ağralı

The energy-savings of four hypothetical households in different climatic regions of Turkey were calculated via a nonlinear mixed integer optimization model. The ideal insulation material, its optimum thickness, and the ideal window type were determined. The standard degree days method was used with five different base temperatures for heating and five different base temperatures for cooling. The climatic conditions of the region, the properties of the insulation options, the unit price of fuel and electricity and the base temperature are used as model inputs, whereas the combination of selected insulation material with its optimum thickness and window type are given as model outputs. Stone Wool was found to be the ideal wall insulation material in all scenarios. The optimum window type was found to depend on the heating or cooling requirements of the house, as well as the lifetime of insulation. The region where the energy saving actions are deemed most feasible has been identified as Erzurum (Region 4), followed by Antalya (Region 1). Finally, the effect of changing the base temperature on energy savings was investigated and the results showed that an approximate average increase of $15/°C in annual savings is possible. Our model can be used by any prospective home-owner who would like to maximize their energy savings.


Energies ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1283
Author(s):  
Jadwiga Świrska-Perkowska ◽  
Zbigniew Perkowski

One of the strategies to improve the energy performance of buildings may be the use of passive solar systems with transparent insulation. In the article, a numerical model of solar wall (SW) with transparent insulation (TI) obtained using the method of elementary balances is presented. On this basis, numerical simulations of the behavior of SW with a transparent honeycomb insulation made of modified cellulose acetate were performed for 4 different climatic conditions in Europe (Stockholm, Warsaw, Paris, and Rome). For each location, the calculations were carried out for three different TI thickness values (48, 88, and 128 mm), for thermal diffusivity of the accumulating layer (AL) ranging from 4.32 × 10−7 to 8.43 × 10−7 m2/s, and for its thickness ranging from 0.1 to 0.5 m. The purpose of simulations was to select the appropriate material and thickness of AL and TI for the climatic conditions. The following solutions proved to be the most favorable: Stockholm: TI—thk. 128 mm, AL—sand-lime blocks, thk. 25 cm; Warsaw: TI—thk. 128 mm, AL—sand-lime blocks, thk. 27 cm; Paris: TI—thk. 88 mm, AL—solid ceramic brick, thk. 27 cm; Rome: TI—thk. 48 mm, AL—solid ceramic brick, thk. 29 cm.


2021 ◽  
Vol 2 (1) ◽  
pp. 11-16
Author(s):  
Annuar Baharuddin ◽  
Abdul Hamid Alias ◽  
Anuar Shaari

An alternative to the use of solar systems is an electricity saving activity that can provide a profit if the load used is in accordance with the level of capacity of the system. Load selection in solar systems is very important in ensuring the stability of the system itself. Energy from sunlight is the main source of direct current power generation but it is subject to the capabilities of the Maximum Power Point Tracking (MPPT) solar charger controller used. The selection of the appropriate load will provide good efficiency as well as more efficient energy savings. In this paper,13Watt LED bulb, 24Watt Twisted fluorescent lamp and 30Watt T8 LED lamp are tested in an experimental study to see the effect of their use on the inverter current, the current flowing through the photovoltaic panel and the current used to charge a battery in the solar system. These data will be used to make comparisons with the energy savings generated by this solar system to provide longer time to use. The brightness of the lamp is also compared using digital Lux meters. The results of this study have shown that the use of 13Watt LEDs is more economical in terms of direct current (Dc) power and contributes to brighter lighting than the 24Watt twisted fluorescent lamp and 30Watt T8 LED lamp used.


Symmetry ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1278
Author(s):  
Anna Turysheva ◽  
Irina Voytyuk ◽  
Daniel Guerra

This paper presents a computational tool for estimating energy generated by low-power photovoltaic systems based on the specific conditions of the study region since the characteristic energy equation can be obtained considering the main climatological factors affecting these systems in terms of the symmetry or skewness of the random distribution of the generated energy. Furthermore, this paper is aimed at determining any correlation that exists between meteorological variables with respect to the energy generated by 5-kW solar systems in the specific climatic conditions of the Republic of Cuba. The paper also presents the results of the influence of each climate factor on the distribution symmetry of the generated energy of the solar system. Studying symmetry in statistical models is important because they allow us to establish the degree of symmetry (or skewness), which is the probability distribution of a random variable, without having to make a graphical representation of it. Statistical skewness reports the degree to which observations are distributed evenly and proportionally above and below the center (highest) point of the distribution. In the case when the mentioned distribution is balanced, it is called symmetric.


2021 ◽  
Vol 11 (1) ◽  
pp. 376
Author(s):  
Giacomo Cillari ◽  
Fabio Fantozzi ◽  
Alessandro Franco

Passive solar system design is an essential asset in a zero-energy building perspective to reduce heating, cooling, lighting, and ventilation loads. The integration of passive systems in building leads to a reduction of plant operation with considerable environmental benefits. The design can be related to intrinsic and extrinsic factors that influence the final performance in a synergistic way. The aim of this paper is to provide a comprehensive view of the elements that influence passive solar systems by means of an analysis of the theoretical background and the synergistic design of various solutions available. The paper quantifies the potential impact of influencing factors on the final performance and then investigates a case study of an existing public building, analyzing the effects of the integration of different passive systems through energy simulations. General investigation has highlighted that latitude and orientation impact energy saving on average by 3–13 and 6–11 percentage points, respectively. The case study showed that almost 20% of the building energy demand can be saved by means of passive solar systems. A higher contribution is given by mixing direct and indirect solutions, as half of the heating and around 25% of the cooling energy demand can be cut off.


2013 ◽  
Vol 2013 ◽  
pp. 1-6
Author(s):  
Meng-Hui Wang

Due to the complex parameters of a solar power system, the designer not only must think about the load demand but also needs to consider the price, weight, and annual power generating capacity (APGC) and maximum power of the solar system. It is an important task to find the optimal solar power system with many parameters. Therefore, this paper presents a novel decision-making method based on the extension theory; we call it extension decision-making method (EDMM). Using the EDMM can make it quick to select the optimal solar power system. The paper proposed this method not only to provide a useful estimated tool for the solar system engineers but also to supply the important reference with the installation of solar systems to the consumer.


2018 ◽  
Vol 63 (1) ◽  
pp. 57-66
Author(s):  
Balázs Bokor ◽  
Hacer Akhan ◽  
Dogan Eryener ◽  
László Kajtár

Transpired solar collector (TSC) systems are simple solutions for the preheating of ventilation air with solar energy. Their performance is a function of several environmental factors, so the climatic conditions of the location play an important role. In this paper, the effect of different climatic zones on the thermal performance of the TSC is investigated. To exclude other sources of influence, the same reference industrial building is examined in four Turkish locations (Antalya, Istanbul, Ankara and Sivas) representing different climatic conditions. RETScreen simulation is carried out for all four regions to obtain the drop of conventional heating requirement in case absorber azimuth of 0°, 45° and 90°. To illustrate the performance, temperature rise, heating energy savings and annual solar fraction are presented. Generally, it can be stated that a location with cold climate and high solar radiation at the same time benefits most from the use of a TSC system. A mathematical correlation has been found showing the solar fraction's dependence on solar radiation and heating degree days. Finally, simulation results have been compared to a set of measurement data from an industrial building's TSC system near Istanbul.


2020 ◽  
Vol 197 ◽  
pp. 02008
Author(s):  
Giacomo Cillari ◽  
Fabio Fantozzi ◽  
Alessandro Franco

Data from the International Energy Agency confirm that in a zero-energy perspective the integration of solar systems in buildings is essential. The development of passive solar strategies has suffered the lack of standard performance indicators and design guidelines. The aim of this paper is to provide a critical analysis of the main passive solar design strategies based on their classification, performance evaluation and selection methods, with a focus on integrability. Climate and latitude affect the amount of incident solar radiation and the heat losses, while integrability mainly depends on the building structure. For existing buildings, shading and direct systems represent the easiest and most effective passive strategies, while building orientation and shape are limited to new constructions: proper design can reduce building energy demand around 40%. Commercial buildings prefer direct use systems while massive ones with integrated heat storage are more suitable for family houses. A proper selection must consider the energy and economic balance of different building services involved: a multi-objective evaluation method represents the most valid tool to determine the overall performance of passive solar strategies.


Sign in / Sign up

Export Citation Format

Share Document