scholarly journals INDUCED PROTEIN PROFILE CHANGES IN ARSENATE TOLERANT AND SENSITIVE PSEUDOMONAS FLUORESCENS STRAINS

Author(s):  
Stefan Shilev ◽  
Almudena Fernández López ◽  
María Sancho Prieto ◽  
Enrique David Sancho Puebla

Pseudomonas fluorescens are gram‐negative, motile, rod‐shaped bacteria known for their metabolic versatility. Many strains of this species possess excellent capability to colonize plant roots, promoting plant growth in soils contaminated with toxic metals. P. fluorescens biotype F is a strain tolerant to arsenic which had been isolated previously from soil contaminated with arsenic and other toxic metals and characterized as a promoter of plant growth and accumulation of arsenic. In the present work we studied the protein profile of this strain together with the profile of a sensitive P. fluorescens CECT 378 in the presence and absence of sodium arsenate using two‐dimensional polyacrylamide gel electrophoresis (2D‐PAGE). The gels were analyzed by PDQuest, while the statistical significance was proved by ANOVA. We found 9 differentially expressed proteins in the tolerant strain ‐ 4 new proteins, 4 upregulated proteins and 1 downregulated proteins in the presence of 1000 ppm As. In the non‐tolerant strain there were 7 differentially expressed proteins ‐ 1 new protein, 3 upregulated proteins and 3 downregulated proteins. The identification of the proteins with MALDI‐TOF is in progress.

2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Rong Zhang ◽  
Weitao Jiang ◽  
Xin Liu ◽  
Yanan Duan ◽  
Li Xiang ◽  
...  

Abstract Background Apple replant disease (ARD) has been reported from all major fruit-growing regions of the world, and is often caused by biotic factors (pathogen fungi) and abiotic factors (phenolic compounds). In order to clarify the proteomic differences of Fusarium moniliforme under the action of phloridzin, and to explore the potential mechanism of F. moniliforme as the pathogen of ARD, the role of Fusarium spp. in ARD was further clarified. Methods In this paper, the quantitative proteomics method iTRAQ analysis technology was used to analyze the proteomic differences of F. moniliforme before and after phloridzin treatment. The differentially expressed protein was validated by qRT-PCR analysis. Results A total of 4535 proteins were detected, and 293 proteins were found with more than 1.2 times (P< 0.05) differences. In-depth data analysis revealed that 59 proteins were found with more than 1.5 times (P< 0.05) differences, and most proteins were consistent with the result of qRT-PCR. Differentially expressed proteins were influenced a variety of cellular processes, particularly metabolic processes. Among these metabolic pathways, a total of 8 significantly enriched KEGG pathways were identified with at least 2 affiliated proteins with different abundance in conidia and mycelium. Functional pathway analysis indicated that up-regulated proteins were mainly distributed in amino sugar, nucleotide sugar metabolism, glycolysis/ gluconeogenesis and phagosome pathways. Conclusions This study is the first to perform quantitative proteomic investigation by iTRAQ labeling and LC-MS/MS to identify differentially expressed proteins in F. moniliforme under phloridzin conditions. The results confirmed that F. moniliforme presented a unique protein profile that indicated the adaptive mechanisms of this species to phloridzin environments. The results deepened our understanding of the proteome in F. moniliforme in response to phloridzin inducers and provide a basis for further exploration for improving the efficiency of the fungi as biocontrol agents to control ARD.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Beena Hasan ◽  
Ayesha Khan ◽  
Christof Lenz ◽  
Abdul R. Asif ◽  
Nikhat Ahmed

AbstractAlzheimer’s disease (AD) is a complex neurodegenerative disorder with impaired protein activities. Proteins in the form of complexes have a ubiquitous role in diverse range of cellular functions. The key challenge is to identify novel disease associated protein complexes and their potential role in the progression of AD pathology. Protein complexes were obtained from AD brain prefrontal cortex and age matched controls by Blue Native-Polyacrylamide Gel Electrophoresis. A proteomic analysis was performed using second dimension SDS-PAGE followed by nano LC–MS/MS. Differentially expressed proteins were mapped to existing biological networks by Ingenuity Pathway Analysis (IPA). A total of 13 protein complexes with their interacting proteins were resolved on SDS-PAGE. We identified 34 protein spots and found significant abundance difference between the two experimental samples. IPA analysis revealed degeneration of neurons and cell death as a major consequence of protein dysregulation. Furthermore, focused network analysis suggested an integrated regulation of the identified proteins through APP and MAPT dependent mechanisms. The interacting differentially expressed proteins in AD were found to be part of concomitant signaling cascades terminating in neuronal cell death. The identified protein networks and pathways warrant further research to study their actual contribution to AD pathology.


2019 ◽  
Vol 3 (2) ◽  
Author(s):  
F. Kiyimba ◽  
S. Hartson ◽  
J. Rogers ◽  
G. Mafi ◽  
D. VanOverbeke ◽  
...  

ObjectivesDark-cutting beef is a meat quality defect in which meat does not display the marketable bright-red color. Although previous studies have indicated that the ultimate pH of dark-cutting beef is greater than normal, the mechanistic basis for the occurrence is not clear. Various mitochondrial and glycolytic enzymes/proteins are involved in muscle metabolism and lowering of pH. However, limited knowledge is currently available on the muscle protein profile differences between dark-cutting and normal-pH beef. The objective of the current study was to identify proteins related to the development of the dark-cutting condition by comparing the protein expression differences between dark-cutting and normal-pH beef.Materials and MethodsDark-cutting and normal-pH beef samples were collected from six (n = 6) different animals after slaughter. Tissue samples (0.5 g) were digested in 5 mL of lysis buffer. Tissue lysates were homogenized, boiled, sonicated using a bioruptor and centrifuged at 10,000 g for 10 min. Samples were digested with trypsin/Lys-C overnight at 37°C, after which additional 2 µg/mL of protease was added and digestion was continued for another 8h. The resulting trypsinolytic peptides were acidified to 1% trifluoroacetic acid and purified by solid phase extraction with C18 affinity media. Protein expression profiles of both dark-cutting and normal-pH beef samples were determined using LC-MS/MS mass spectrometry-based proteomics. Collected raw data instrument files were searched against a bovine proteome database of 23,968 bovine proteome sequences using MaxQuant (V.1.5.3.8). Differential protein expression analysis was done in Perseus (V.1.5.1.3). Ingenuity pathway analysis (IPA) was utilized to determine the significant pathways of the differentially expressed proteins in dark-cutting and normal-pH beef. Gene ontology enrichment pathway analysis was performed to determine the main functions of the differentially expressed proteins in dark-cutting and normal-pH beef identified in our samples.ResultsMass spectrometry analysis identified 1148 proteins, and 97 of these proteins were differentially expressed between normal-pH and dark-cutting beef (P < 0.05). Fold change of 1.5 was observed for 29 proteins. Dark-cutting beef had 19 abundant proteins, while normal-pH beef had 10 abundant proteins. The majority of the upregulated proteins in dark-cutting beef were involved in mitochondrial functioning and metabolism, while the majority of the downregulated proteins were important in glycogen degradation, calcium signaling, α-adrenergic signaling, n-NOS-signaling and the proteasome pathways.ConclusionThe results identify new protein biomarkers associated with dark-cutting and suggest new mechanistic explanations for the dark-cutting phenotype.


2020 ◽  
Author(s):  
Tianyue Yu ◽  
Yan-Hong Yong ◽  
Jun-yu Li ◽  
Biao Fang ◽  
Can-ying Hu ◽  
...  

Abstract Background : With evidence of warming climates, it is important to understand the effects of heat stress in farm animals in order to minimize production losses. Studying the changes in the brain proteome induced by heat stress may aid in understanding how heat stress affects brain function. The hypothalamus is a critical region in the brain that controls the pituitary gland, which is responsible for the secretion of several important hormones. In this study, we examined the hypothalamic protein profile of 10 pigs (15 ± 1 kg body weight), with five subjected to heat stress (35 ± 1 °C; relative humidity = 90%) and five acting as controls (28 ± 3°C; RH = 90%). Result: The isobaric tags for relative and absolute quantification (iTRAQ) analysis of the hypothalamus identified 1710 peptides corresponding to 360 proteins, including 295 differentially expressed proteins (DEPs), 148 of which were up-regulated and 147 down-regulated, in heat-stressed animals. The Ingenuity Pathway Analysis (IPA) software predicted 30 canonical pathways, four functional groups, and four regulatory networks of interest. The DEPs were mainly concentrated in the cytoskeleton of the pig hypothalamus during heat stress. Conclusions: In this study, heat stress significantly increased the body temperature and reduced daily gain of body weight in pigs. Furthermore, we identified 295 differentially expressed proteins, 147 of which were down-regulated and 148 up-regulated in hypothalamus of heat stressed pigs. The IPA showed that the DEPs identified in the study are involved in cell death and survival, cellular assembly and organization, and cellular function and maintenance, in relation to neurological disease, metabolic disease, immunological disease, inflammatory disease, and inflammatory response. We hypothesize that a malfunction of the hypothalamus may destroy the host physical and immune function, resulting in decreased growth performance and immunosuppression in heat stressed pigs.


2015 ◽  
Vol 41 ◽  
pp. 1-223
Author(s):  
K. Chandrasekhar ◽  
J. Pramoda Kumari

In the present study, we described the protein profile experimentally by 2D-PAGE and MALDI analysis to understand the stress mechanisms of cocoti sap and wine on E.coli Nissle 1917. We isolated one newly expressed protein from cocoti wine treated gel which is not present in both control and cocoti sap treated sample i.e. P21 prophage-derived head-stabilizing proteinVG03_ECOL6 (3n1) also called as Head protein gp3. This protein mainly activities related to the viral life cycle. It helps to attach the viral gene into host. The growth rate was delayed in cocoti wine treated E.coli Nissle 1917 when compared to control and cocoti sap treated samples. Stress mechanism induce many proteins they are involved in metabolic process, hydrolase activity, lyase activity, quinone binding, phosphotransferase system, carbohydrate metabolism, DNA binding, DNA repair, transferase activity, oxidoreductase, purine metabolism, transcription anti-termination, transcription regulation and other related activities.We proved that the predicted protein structure quality, resolution, density and error plot values by QMEAN analysis. Based on these results, only two differentially expressed proteins under sap stress showed that the significant results, which were N-acetylgalactosamine-specific phosphotransferase enzyme IIB component 1, PTPB1_ECOLI and DinI-like protein Z3305/ECs2939 in prophage CP-933VDINI1_ECO57. In case of wine stress, the differentially expressed proteins were Transcription anti-termination protein RFAH- ECO57 NusA and PUR7-eco24- phosphoribosylamidazole-succinocarboxamide synthase showed significant results. ProtParam analysis indicating that the multiple physico-chemical characters of differentially expressed proteins were differed and compared. The phylogenetic tree represents the relationship in-between the differentially expressed proteins, were showed siblings (related) as well as monophytic clade.


2010 ◽  
Vol 30 (7) ◽  
pp. 541-549 ◽  
Author(s):  
Yang-Ching Ko ◽  
Wu-Huei Hsu ◽  
Jing-Gung Chung ◽  
Mong-Ping Dai ◽  
Chien-Chih Ou ◽  
...  

T-lymphocyte (T-LC)-derived cytokines have been implicated in asthmatic pathogenesis. Proteomic technology is now widely accepted as a complementary technology to genetic profiling. We investigated the changes of proteins in T-LC of asthmatic patients from the no typical therapy (uncontrolled) to typical therapy (controlled) level by using standard proteome technology. Methods: The proteins of CD4+ T-LC were isolated from the whole blood of six asthmatic patients from uncontrolled to controlled levels over 3 months. Two-dimensional polyacrylamide gel electrophoresis was performed and coomassie blue stained protein spots were comparatively analyzed by using an image analyzer. Some differentially expressed spots were identified by liquid chromatography/mass spectrometry and database search. Our results showed that 13 proteins showed different expression. Six protein spots in the CD4+ T-LC of the uncontrolled asthmatic patients were increased and 7 spots were decreased compared to those of the controlled subjects. In conclusion, the proteomic examination of the CD4+ T-LC revealed some differentially expressed proteins in the uncontrolled and controlled asthmatic patients. The possibility of using the differentially expressed proteins as important biomarkers and therapeutic targets warrants further study.


2016 ◽  
Vol 28 (10) ◽  
pp. 1622 ◽  
Author(s):  
Sellappan Selvaraju ◽  
Lakshminarayana Somashekar ◽  
Binsila B. Krishnan ◽  
Sivashanmugam Parthipan ◽  
Guvvala Pushparani ◽  
...  

The buffalo seminal plasma protein profile and its relationship with sperm quality have not been studied in detail. Thus, the aim of the present study was to profile buffalo seminal plasma proteins and to assess the relationship between differentially expressed proteins and sperm characteristics. Semen samples (n = 44) were collected from 11 Murrah buffalo bulls (four ejaculates from each animal) and seminal plasma protein profiling was performed by sodium dodecyl sulfate–polyacrylamide gel electrophoresis. Matrix-assisted laser desorption ionisation time-of-flight analysis of one of the differentially expressed proteins, namely the 11–12 kDa protein, identified it as tuberoinfundibular peptide of 39 residues (TIP39). Western blot analysis confirmed the presence of TIP39, with TIP39 expression in seminal plasma varying among bulls. Based on TIP39 levels, bulls were classified into two groups, those with high and low protein. The percentages of spermatozoa positive for mitochondrial membrane potential test, chromatin distribution test, synthetic media sperm penetrability test and acrosomal integrity test were significantly (P < 0.05) high in the high protein group. The present study is the first to demonstrate the presence of TIP39 in buffalo seminal plasma and the positive effect of TIP39 on the functional parameters and fertilising ability of spermatozoa.


2012 ◽  
Vol 4 ◽  
pp. BIC.S10502 ◽  
Author(s):  
Faiz-ul-Hassan Nasim ◽  
Samina Ejaz ◽  
Muhammad Ashraf ◽  
Abdul RehmanAsif ◽  
Michael Oellerich ◽  
...  

Most of the approximately 90,000 cases of Breast Cancer (BC) documented annually in Pakistan are not diagnosed properly because of lack of suitable markers. We performed serum proteome expression profiling of BC and benign breast disease (BBD) patients with the aim to identify biomarkers that can be helpful for diagnosis and prognosis of the disease. Sera of patients were analyzed by one-dimensional SDS polyacrylamide gel electrophoresis (PAGE). Differentially expressed proteins were subjected to identification through LC-MS/MS analysis. In majority of the BC cases some acute phase proteins (APP) and some complement system components (C3 and C8) containing fractions were up-regulated with the exception of transthyretin (TTR) which was predominantly (68.75%) down-regulated (n = 33/48) in the sera of these patients. Varying expression patterns were observed in BBD patients and healthy controls. These differentially expressed proteins have the potential to serve as diagnostic biomarkers for BC as well as benign breast diseases.


Sign in / Sign up

Export Citation Format

Share Document