scholarly journals Benefits of fecal microbiota transplantation: A comprehensive review

2020 ◽  
Vol 14 (10) ◽  
pp. 1074-1080
Author(s):  
Muluneh Ademe

A growing body of literatures showed the interaction of dysbiotic gut with a wide range of disorders, and the clinical use of fecal microbiota transplantation (FMT) shifted from infectious disease to non-communicable disorders. Despite the promising therapeutic benefits of FMT, the exact mechanisms through which fecal recipients benefit from the fecal intervention are not well understood. However, owing to the advantages of having a healthy gut microbiome, possible mechanisms of actions of FMT has been described. On the one hand, through direct ecological competition, FMT may potentially stimulate decolonization of pathogenic microorganisms and increase host resistance to pathogens. Moreover, following dysbiosis, abnormal microbial colonization of the gastrointestinal tract may also cause excessive or dysregulated immune response, resulting in chronic inflam­mation and the development of mucosal lesions. In this regard, repopulating gut microbiome through FMT helps to restore immune function and reduce host damage. On the other hand, FMT helps to restore essential metabolites used for host metabolism, including short-chain fatty acids (SCFA), antimicrobial peptides (AMP), bacteriocins and bile acids. Therefore, in this review, the existing evidences regarding the mechanisms of action, current opportunities and challenges of FMT will be described.

2020 ◽  
Author(s):  
Yingli Jing ◽  
Yan Yu ◽  
Fan Bai ◽  
Limiao Wang ◽  
Degang Yang ◽  
...  

Abstract Background: Spinal cord injury (SCI) patients display disruption of gut microbiome and gut dysbiosis exacerbate neurological impairment in SCI models. Cumulative data support an important role of gut microbiome in SCI. Here, we investigated the hypothesis that fecal microbiota transplantation (FMT) may exert a neuroprotective effect on SCI mice. Results: We found that FMT facilitated functional recovery, promoted neural axonal regeneration, improved animal weight gain and metabolic profiling, and enhanced intestinal barrier integrity and GI motility. High-throughput sequencing revealed that levels of phylum Firmicutes, genus Blautia, Anaerostipes and Lactobacillus were reduced in fecal samples of SCI mice, and FMT remarkably reshaped gut microbiome. Also, FMT-treated SCI mice showed increased amount of fecal short-chain fatty acids (SCFAs), which correlated with alteration of intestinal permeability and locomotor recovery. Furthermore, FMT down-regulated IL-1β/NF-κB signaling in spinal cord and NF-κB signaling in gut. Conclusion: Our study demonstrates that reprogramming of gut microbiota by FMT improves locomotor and GI functions in SCI mice, possibly through the anti-inflammatory functions of SCFAs.


Microbiome ◽  
2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Yingli Jing ◽  
Yan Yu ◽  
Fan Bai ◽  
Limiao Wang ◽  
Degang Yang ◽  
...  

Abstract Background Spinal cord injury (SCI) patients display disruption of gut microbiome, and gut dysbiosis exacerbate neurological impairment in SCI models. Cumulative data support an important role of gut microbiome in SCI. Here, we investigated the hypothesis that fecal microbiota transplantation (FMT) from healthy uninjured mice into SCI mice may exert a neuroprotective effect. Results FMT facilitated functional recovery, promoted neuronal axonal regeneration, improved animal weight gain and metabolic profiling, and enhanced intestinal barrier integrity and GI motility in SCI mice. High-throughput sequencing revealed that levels of phylum Firmicutes, family Christensenellaceae, and genus Butyricimonas were reduced in fecal samples of SCI mice, and FMT remarkably reshaped gut microbiome. Also, FMT-treated SCI mice showed increased amount of fecal short-chain fatty acids (SCFAs), which correlated with alteration of intestinal permeability and locomotor recovery. Furthermore, FMT downregulated IL-1β/NF-κB signaling in spinal cord and NF-κB signaling in gut following SCI. Conclusion Our study demonstrates that reprogramming of gut microbiota by FMT improves locomotor and GI functions in SCI mice, possibly through the anti-inflammatory functions of SCFAs.


F1000Research ◽  
2019 ◽  
Vol 8 ◽  
pp. 997 ◽  
Author(s):  
Derek M. Lin ◽  
Henry C. Lin

Bacteriophages are the most prominent members of the gut microbiome, outnumbering their bacterial hosts by a factor of 10. Phages are bacteria-specific viruses that are gaining attention as highly influential regulators of the gut bacterial community. Dysregulation of the gut bacterial community contributes to dysbiosis, a microbiome disorder characterized by compositional and functional changes that contribute to disease. A role for phages in gut microbiome dysbiosis is emerging with evidence that the gut phage community is altered in dysbiosis-associated disorders such as colorectal cancer and inflammatory bowel disease. Several recent studies have linked successful fecal microbiota transplantation to uptake of the donor’s gut phage community, offering some insight into why some recipients respond to treatment whereas others do not. Here, we review the literature supporting a role for phages in mediating the gut bacterial community, giving special attention to Western diet dysbiosis as a case study to demonstrate a theoretical phage-based mechanism for the establishment and maintenance of dysbiosis.


2019 ◽  
Vol 3 (Supplement_1) ◽  
Author(s):  
Lucille Yanckello ◽  
Jared Hoffman ◽  
Ishita Parikh ◽  
Jessie Hoffman ◽  
Stefan Green ◽  
...  

Abstract Objectives The APOE4 allele is a genetic risk factor for certain diseases, due in part to alterations in lipid and glucose metabolism. The gut microbiota is also known to impact metabolic and can be beneficially modulated by prebiotics. Prebiotics are fermented into metabolites by the gut microbiota. These metabolites act as gut-brain axis components. However, the interaction of the APOE4 allele, gut microbiota, and prebiotics are unknown. The goal of the study was to use prebiotic diet to restore the gut microbiome of mice with human APOE4 (E4FAD) genes. We hypothesized that the microbial compositions of E4 mice fed inulin, compared to control fed, will correlate to metabolites being produced by the microbiome that confer benefit to host metabolism. Methods At 3 months of age the E4FAD mice were fed for 4 months with either control or inulin diet. We used 16S rRNA sequencing to determine gut microbiota diversity and species variations; non-targeted UPLC-MS/MS and GC-MS analysis was used to determine metabolic profiles of blood. Results The inulin fed mice showed a more beneficial microbial taxa profile than those mice that were control fed. Control mice showed higher levels of dimethylglycine, choline, creatine and the polyamine spermine. Higher levels of spermine, specifically, correlate to higher levels of the Proteobacteria which has been implicated in GI disorders. E4 inulin fed mice showed higher levels of bile acids, short chain fatty acids and metabolites involved in energy, increased levels of tryptophan metabolites and robust increases in sphingomyelins. Specifically in E4 inulin fed mice we saw increases in certain genera of bacteria, all of which have been implicated in being beneficial to the composition of the microbiome and producing one or more of the above mentioned metabolites. Conclusions We believe the disparities of microbial metabolite production between E4 inulin fed mice and E4 control fed mice can be attributed to differences in certain taxa that produce these metabolites, and that higher levels of these taxa are due to the dietary intervention of inulin. Despite the APOE4 allele increasing one's risk for certain diseases, we believe that beneficially modulating the gut microbiota may be one way to enhance host metabolism and decrease disease risk over time. Funding Sources NIH/NIDDK T323048107792, NIH/NIA R01AG054459, NIEHS/NIH P42ES007380. Supporting Tables, Images and/or Graphs


2020 ◽  
Vol 41 (5) ◽  
pp. 678-685 ◽  
Author(s):  
Pei-pei Zhang ◽  
Lin-lin Li ◽  
Xue Han ◽  
Qin-wei Li ◽  
Xu-hua Zhang ◽  
...  

2019 ◽  
Vol 97 (Supplement_3) ◽  
pp. 305-306
Author(s):  
Quanhang Xiang ◽  
Jian Peng

Abstract The objective of this study was to investigate the effects of early gut colonization by fecal microbiota transplantation and probiotics intervention on growth performance, immunity function, and gut health of piglets. A total of 121 pregnant sows were divided into 6 groups with average parity of 3.66 ± 1.34. After delivery, piglets of group AB were treated with antibiotics at age of 3-day. Piglets of group CON were gavaged with PBS. The remaining four treatment groups, FMT, FMT+C, FMT+S, and FMT+C+S, the piglets were gavaged with fecal suspension, fecal suspension with C. butyricum, fecal suspension with S. boulardii, and fecal suspension with C. butyricum and S.boulardii, respectively, with the frequency of once daily in the first 3 days. All the piglets were weaned at age of 21 day. The individual body weight of piglets were weighed weekly, blood samples and fecal samples were collected weekly. At the end of study, the ADG and diarrhea rate were caculated. FMT+C+S and FMT could increased piglets 21-day-old weight (P < 0.01), and FMT+C+S could increased ADG (P < 0.05) and decreased diarrhea rate (P < 0.05). Early antibiotics exposure for health care has no positive effect on growth performance and diarrhea. FMT, FMT+S and FMT+C+S improved fecal sIgA and plasma IgG of 14-day-old piglets (P < 0.05). FMT+C+S decreased the concentration of plasma DAO and D-LA, and increased fecal MUC2 content, so that the intestinal barrier was enhanced. The early intervention of FMT combined with C. butyricum and S. boulardii reduced the abundance of E. coli, and increased the abundance of Lactobacillus, Bifidobacterium and Faecalibacterium prausnitzii. In addition, it also increases the production of intestinal short-chain fatty acids. In conclusion, these data indicated that early intervention with FMT combined C. butyricum and S. boulardii could improve the growth performance, immune responses, and gut function of sucking piglets.


2019 ◽  
Vol 20 (18) ◽  
pp. 4584 ◽  
Author(s):  
Romain Villéger ◽  
Amélie Lopès ◽  
Guillaume Carrier ◽  
Julie Veziant ◽  
Elisabeth Billard ◽  
...  

Recently, preclinical and clinical studies targeting several types of cancer strongly supported the key role of the gut microbiota in the modulation of host response to anti-tumoral therapies such as chemotherapy, immunotherapy, radiotherapy and even surgery. Intestinal microbiome has been shown to participate in the resistance to a wide range of anticancer treatments by direct interaction with the treatment or by indirectly stimulating host response through immunomodulation. Interestingly, these effects were described on colorectal cancer but also in other types of malignancies. In addition to their role in therapy efficacy, gut microbiota could also impact side effects induced by anticancer treatments. In the first part of this review, we summarized the role of the gut microbiome on the efficacy and side effects of various anticancer treatments and underlying mechanisms. In the second part, we described the new microbiota-targeting strategies, such as probiotics and prebiotics, antibiotics, fecal microbiota transplantation and physical activity, which could be effective adjuvant therapies developed in order to improve anticancer therapeutic efficiency.


F1000Research ◽  
2020 ◽  
Vol 9 ◽  
pp. 46 ◽  
Author(s):  
Eamonn M.M Quigley ◽  
Prianka Gajula

We are in the midst of “the microbiome revolution”—not a day goes by without some new revelation on the potential role of the gut microbiome in some disease or disorder. From an ever-increasing recognition of the many roles of the gut microbiome in health and disease comes the expectation that its modulation could treat or prevent these very same diseases. A variety of interventions could, at least in theory, be employed to alter the composition or functional capacity of the microbiome, ranging from diet to fecal microbiota transplantation (FMT). For some, such as antibiotics, prebiotics, and probiotics, an extensive, albeit far from consistent, literature already exists; for others, such as other dietary supplements and FMT, high-quality clinical studies are still relatively few in number. Not surprisingly, researchers have turned to the microbiome itself as a source for new entities that could be used therapeutically to manipulate the microbiome; for example, some probiotic strains currently in use were sourced from the gastrointestinal tract of healthy humans. From all of the extant studies of interventions targeted at the gut microbiome, a number of important themes have emerged. First, with relatively few exceptions, we are still a long way from a precise definition of the role of the gut microbiome in many of the diseases where a disturbed microbiome has been described—association does not prove causation. Second, while animal models can provide fascinating insights into microbiota–host interactions, they rarely recapitulate the complete human phenotype. Third, studies of several interventions have been difficult to interpret because of variations in study population, test product, and outcome measures, not to mention limitations in study design. The goal of microbiome modulation is a laudable one, but we need to define our targets, refine our interventions, and agree on outcomes.


Sign in / Sign up

Export Citation Format

Share Document