scholarly journals Isolation of the Bacillus thuringiensis plasmid carrying Bacthuricin F4 coding genes and evidence of its conjugative transfer

2014 ◽  
Vol 8 (06) ◽  
pp. 727-732 ◽  
Author(s):  
Ines Ben Fguira ◽  
Zaineb Fourati ◽  
Fakher Kamoun ◽  
Slim Tounsi ◽  
Samir Jaoua

Introduction: Conjugation is an excellent natural mode of DNA transfer in vivo between bacteria, particularly when these conjugative elements carry technological traits such as bacteriocin encoding genes. In the present work, the bacteriocinogenic plasmid pIBF4 from Bacillus thuringiensis responsible of Bacthuricin F4 synthesis was isolated and characterized. Methodology: To isolate pIBF4, the total plasmid DNA from a non-bacteriocin transposant carrying the mini-Tn10 spectinomycin selective marker was extracted and used to transform Escherichia coli strain Top10. PIBF4 was extracted from the obtained transformant and then subjected to restriction enzyme analysis. Plasmid curing experiments were conducted to test the stability of pIBF4 at a stringent temperature of 42°C. Conjugative behavior of pIBF4 was assessed by mating experiments using the non-bacteriocin transposant mutant as a donor strain and several Bacillus thuringiensis strains as recipients. Results: The pIBF4 plasmid was isolated and had a molecular weight of 19.1 kb. Ninety-five percent of cells retained the pIBF4 plasmid after 200 generations, demonstrating its high stability. PIBF4 was successfully transferred to Bacillus thuringiensis HD1CryB strain with a transfer frequency of 1x10-8 transconjugants per donor cell. The study of the recipient host range revealed that pIBF4 is specifically transferable to Bacillus thuringiensis strains with variable transfer frequencies depending on the recipient host strain. Conclusion: Our results show that pIBF4 is a 19.1 kb highly stable plasmid transferable by conjugation to Bacillus thuringiensis strains with deferent transfer frequencies.

2010 ◽  
Vol 432 (2) ◽  
pp. 323-332 ◽  
Author(s):  
Jason P. Ross ◽  
Isao Suetake ◽  
Shoji Tajima ◽  
Peter L. Molloy

The biochemical mechanism of short RNA-induced TGS (transcriptional gene silencing) in mammals is unknown. Two competing models exist; one suggesting that the short RNA interacts with a nascent transcribed RNA strand (RNA–RNA model) and the other implying that short RNA forms a heteroduplex with DNA from the unwound double helix, an R-loop structure (RNA–DNA model). Likewise, the requirement for DNA methylation to enact TGS is still controversial. In vitro assays using purified recombinant murine Dnmt (DNA methyltransferase) 1-dN (where dN indicates an N-terminal truncation), 3a and 3b enzymes and annealed oligonucleotides were designed to question whether Dnmts methylate DNA in a RNA–DNA heteroduplex context and whether a RNA–DNA heteroduplex R-loop is a good substrate for Dnmts. Specifically, model synthetic oligonucleotides were used to examine methylation of single-stranded oligonucleotides, annealed oligonucleotide duplexes, RNA–DNA heteroduplexes, DNA bubbles and R-loops. Dnmt methylation activity on the model substrates was quantified with initial velocity assays, novel ARORA (annealed RNA and DNA oligonucleotide-based methylation-sensitive restriction enzyme analysis), tBS (tagged-bisulfite sequencing) and the quantitative PCR-based method MethylQuant. We found that RNA–DNA heteroduplexes and R-loops are poor substrates for methylation by both the maintenance (Dnmt1) and de novo (Dnmt3a and Dnmt3b) Dnmts. These results suggest the proposed RNA/DNA model of TGS in mammals is unlikely. Analysis of tagged-bisulfite genomic sequencing led to the unexpected observation that Dnmt1-dN can methylate cytosines in a non-CpG context in DNA bubbles. This may have relevance in DNA replication and silencing of transcriptionally active loci in vivo.


1999 ◽  
Vol 65 (11) ◽  
pp. 4949-4956 ◽  
Author(s):  
C. N. Jacobsen ◽  
V. Rosenfeldt Nielsen ◽  
A. E. Hayford ◽  
P. L. Møller ◽  
K. F. Michaelsen ◽  
...  

ABSTRACT The probiotic potential of 47 selected strains ofLactobacillus spp. was investigated. The strains were examined for resistance to pH 2.5 and 0.3% oxgall, adhesion to Caco-2 cells, and antimicrobial activities against enteric pathogenic bacteria in model systems. From the results obtained in vitro, five strains,Lactobacillus rhamnosus 19070-2, L. reuteri DSM 12246, L. rhamnosus LGG, L. delbrueckii subsp.lactis CHCC 2329, and L. casei subsp.alactus CHCC 3137, were selected for in vivo studies. The daily consumption by 12 healthy volunteers of two doses of 1010 freeze-dried bacteria of the selected strains for 18 days was followed by a washout period of 17 days. Fecal samples were taken at days 0 and 18 and during the washout period at days 5 and 11.Lactobacillus isolates were initially identified by API 50CHL and internal transcribed spacer PCR, and their identities were confirmed by restriction enzyme analysis in combination with pulsed-field gel electrophoresis. Among the tested strains, L. rhamnosus 19070-2, L. reuteri DSM 12246, and L. rhamnosus LGG were identified most frequently in fecal samples; they were found in 10, 8, and 7 of the 12 samples tested during the intervention period, respectively, whereas reisolations were less frequent in the washout period. The bacteria were reisolated in concentrations from 105 to 108 cells/g of feces. Survival and reisolation of the bacteria in vivo appeared to be linked to pH tolerance, adhesion, and antimicrobial properties in vitro.


1980 ◽  
Vol 36 (1) ◽  
pp. 99-109 ◽  
Author(s):  
G. Rieβ ◽  
B. W. Holloway ◽  
A. Pühler

SUMMARYPlasmids R68 and R68.45 were transferred fromPseudomonas aeruginosatoEscherichia coliby conjugation. R68.45 was able to mobilize theE. colichromosome from different origins at a frequency of about lO−6/donor cell. With R68, no transfer of chromosomal genes could be detected. Plasmid R68.45 differs from its parent R68 only by an additional DNA segment, 2120 bp long, located close to the kanamycin resistance gene. By restriction enzyme analysis it was shown that the additional DNA segment of R68.45 is a duplication of a pre-existing DNA region of R68. The duplicated region is characterized by the following sequence of restriction sites: A–310 bp–SmaI–70 bp–PstI–795 bp–PstI–15 bp–KpnI–540 bp–HpaI–370 bp–B.The endpoints A and B of the duplicated region were determined by a heteroduplex experiment betweenHindIII linearized molecules of R68 and R68.45. It is proposed that this duplication found in R68.45 is responsible for its chromosome mobilizing ability.


Author(s):  
Robert J. Carroll ◽  
Marvin P. Thompson ◽  
Harold M. Farrell

Milk is an unusually stable colloidal system; the stability of this system is due primarily to the formation of micelles by the major milk proteins, the caseins. Numerous models for the structure of casein micelles have been proposed; these models have been formulated on the basis of in vitro studies. Synthetic casein micelles (i.e., those formed by mixing the purified αsl- and k-caseins with Ca2+ in appropriate ratios) are dissimilar to those from freshly-drawn milks in (i) size distribution, (ii) ratio of Ca/P, and (iii) solvation (g. water/g. protein). Evidently, in vivo organization of the caseins into the micellar form occurs in-a manner which is not identical to the in vitro mode of formation.


1977 ◽  
Vol 16 (04) ◽  
pp. 157-162 ◽  
Author(s):  
C. Schümichen ◽  
B. Mackenbrock ◽  
G. Hoffmann

SummaryThe bone-seeking 99mTc-Sn-pyrophosphate compound (compound A) was diluted both in vitro and in vivo and proved to be unstable both in vitro and in vivo. However, stability was much better in vivo than in vitro and thus the in vitro stability of compound A after dilution in various mediums could be followed up by a consecutive evaluation of the in vivo distribution in the rat. After dilution in neutral normal saline compound A is metastable and after a short half-life it is transformed into the other 99mTc-Sn-pyrophosphate compound A is metastable and after a short half-life in bone but in the kidneys. After dilution in normal saline of low pH and in buffering solutions the stability of compound A is increased. In human plasma compound A is relatively stable but not in plasma water. When compound B is formed in a buffering solution, uptake in the kidneys and excretion in urine is lowered and blood concentration increased.It is assumed that the association of protons to compound A will increase its stability at low concentrations while that to compound B will lead to a strong protein bond in plasma. It is concluded that compound A will not be stable in vivo because of a lack of stability in the extravascular space, and that the protein bond in plasma will be a measure of its in vivo stability.


2019 ◽  
Vol 26 (5) ◽  
pp. 339-347 ◽  
Author(s):  
Dilani G. Gamage ◽  
Ajith Gunaratne ◽  
Gopal R. Periyannan ◽  
Timothy G. Russell

Background: The dipeptide composition-based Instability Index (II) is one of the protein primary structure-dependent methods available for in vivo protein stability predictions. As per this method, proteins with II value below 40 are stable proteins. Intracellular protein stability principles guided the original development of the II method. However, the use of the II method for in vitro protein stability predictions raises questions about the validity of applying the II method under experimental conditions that are different from the in vivo setting. Objective: The aim of this study is to experimentally test the validity of the use of II as an in vitro protein stability predictor. Methods: A representative protein CCM (CCM - Caulobacter crescentus metalloprotein) that rapidly degrades under in vitro conditions was used to probe the dipeptide sequence-dependent degradation properties of CCM by generating CCM mutants to represent stable and unstable II values. A comparative degradation analysis was carried out under in vitro conditions using wildtype CCM, CCM mutants and two other candidate proteins: metallo-β-lactamase L1 and α -S1- casein representing stable, borderline stable/unstable, and unstable proteins as per the II predictions. The effect of temperature and a protein stabilizing agent on CCM degradation was also tested. Results: Data support the dipeptide composition-dependent protein stability/instability in wt-CCM and mutants as predicted by the II method under in vitro conditions. However, the II failed to accurately represent the stability of other tested proteins. Data indicate the influence of protein environmental factors on the autoproteolysis of proteins. Conclusion: Broader application of the II method for the prediction of protein stability under in vitro conditions is questionable as the stability of the protein may be dependent not only on the intrinsic nature of the protein but also on the conditions of the protein milieu.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Sean Swetledge ◽  
Renee Carter ◽  
Rhett Stout ◽  
Carlos E. Astete ◽  
Jangwook P. Jung ◽  
...  

AbstractPolymeric nanoparticles have been investigated as potential delivery systems for therapeutic compounds to address many ailments including eye disease. The stability and spatiotemporal distribution of polymeric nanoparticles in the eye are important regarding the practical applicability and efficacy of the delivery system in treating eye disease. We selected poly(lactic-co-glycolic acid) (PLGA) nanoparticles loaded with lutein, a carotenoid antioxidant associated with eye health, as our model ophthalmic nanodelivery system and evaluated its stability when suspended in various conditions involving temperature and light exposure. We also assessed the ocular biodistribution of the fluorescently labeled nanoparticle vehicle when administered topically. Lutein-loaded nanoparticles were stable in suspension when stored at 4 °C with only 26% lutein release and no significant lutein decay or changes in nanoparticle morphology. When stored at 25 °C and 37 °C, these NPs showed signs of bulk degradation, had significant lutein decay compared to 4 °C, and released over 40% lutein after 5 weeks in suspension. Lutein-loaded nanoparticles were also more resistant to photodegradation compared to free lutein when exposed to ultraviolet (UV) light, decaying approximately 5 times slower. When applied topically in vivo, Cy5-labled nanoparticles showed high uptake in exterior eye tissues including the cornea, episcleral tissue, and sclera. The choroid was the only inner eye tissue that was significantly higher than the control group. Decreased fluorescence in all exterior eye tissues and the choroid at 1 h compared to 30 min indicated rapid elimination of nanoparticles from the eye.


2021 ◽  
Vol 16 (1) ◽  
pp. 92-101
Author(s):  
Guanghui Xia ◽  
Xinhua Li ◽  
Zhen Zhang ◽  
Yuhang Jiang

Abstract Polygonatum odoratum (Mill.) Druce (POD) is a natural plant widely used for food and medicine, thanks to its rich content of a strong antioxidant agent called homoisoflavones. However, food processing methods could affect the stability of POD flavones, resulting in changes to their antioxidant activity. This study attempts to evaluate the antioxidant activity of POD flavones subject to different processing methods and determines which method could preserve the antioxidant activity of POD flavones. Therefore, flavones were extracted from POD samples, which had been treated separately with one of the four processing methods: extrusion, baking, high-pressure treatment, and yeast fermentation. After that, the antioxidant activity of the flavones was subject to in vivo tests in zebrafish embryos. The results show that yeast fermentation had the least disruption to the antioxidant activity of POD flavones, making it the most suitable food processing method for POD. By contrast, extrusion and high-pressure treatment both slightly weakened the antioxidant activity of the flavones and should be avoided in food processing. The research results provide a reference for the development and utilization of POD and the protection of its biological activity.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Georgina Navoly ◽  
Conor J. McCann

AbstractEnteric neural stem cells (ENSC) have been identified as a possible treatment for enteric neuropathies. After in vivo transplantation, ENSC and their derivatives have been shown to engraft within colonic tissue, migrate and populate endogenous ganglia, and functionally integrate with the enteric nervous system. However, the mechanisms underlying the integration of donor ENSC, in recipient tissues, remain unclear. Therefore, we aimed to examine ENSC integration using an adapted ex vivo organotypic culture system. Donor ENSC were obtained from Wnt1cre/+;R26RYFP/YFP mice allowing specific labelling, selection and fate-mapping of cells. YFP+ neurospheres were transplanted to C57BL6/J (6–8-week-old) colonic tissue and maintained in organotypic culture for up to 21 days. We analysed and quantified donor cell integration within recipient tissues at 7, 14 and 21 days, along with assessing the structural and molecular consequences of ENSC integration. We found that organotypically cultured tissues were well preserved up to 21-days in ex vivo culture, which allowed for assessment of donor cell integration after transplantation. Donor ENSC-derived cells integrated across the colonic wall in a dynamic fashion, across a three-week period. Following transplantation, donor cells displayed two integrative patterns; longitudinal migration and medial invasion which allowed donor cells to populate colonic tissue. Moreover, significant remodelling of the intestinal ECM and musculature occurred upon transplantation, to facilitate donor cell integration within endogenous enteric ganglia. These results provide critical evidence on the timescale and mechanisms, which regulate donor ENSC integration, within recipient gut tissue, which are important considerations in the future clinical translation of stem cell therapies for enteric disease.


Sign in / Sign up

Export Citation Format

Share Document