scholarly journals Determination of amino acids content in two samples of the plant mixtures by GC-MS

Pharmacia ◽  
2021 ◽  
Vol 68 (1) ◽  
pp. 283-289
Author(s):  
Alona Savych ◽  
Svetlana Marchyshyn ◽  
Myroslava Harnyk ◽  
Victoria Kudria ◽  
Anna Ocheretniuk

Due to the wide range of biologically active substances, the plant mixtures can influence the development of diabetes mellitus and its complications. Amino acids attract particular attention due to their ability to stimulate insulin secretion, reduce hyperglycemia and regulate metabolic processes in patients with diabetes. The aim of this study was to investigate the content of amino acids in the plant mixture samples: 1) Cichorium intybus roots, Elymus repens rhizome, Helichrysum arenarium flowers, Rosa majalis fruits, Zea mays columns with stigmas, 2) Urtica dioica leaf, Taraxacum officinale roots, Vaccinium myrtillus leaf, Rosa majalis fruits, Mentha piperita herb, which have proven antidiabetic activity in studies in vivo. The amino acids were separated by validated method of gas chromatography-mass spectrometry with pre-column derivatisation. Quantitative analyses of amino acids showed that the predominant components were L-proline in the sample 1 and L-leucine and L-proline in the sample 2 of the plant mixtures.

Pharmacia ◽  
2021 ◽  
Vol 68 (3) ◽  
pp. 527-532
Author(s):  
Alona Savych ◽  
Oksana Bilyk ◽  
Valentina Vaschuk ◽  
Ihor Humeniuk

Herbs and their combinations due to the wide range of biologically active substances can influence on various links of the pathogenetic mechanism of development of diabetes mellitus and its complications. One of such combinations is an antidiabetic herbal mixture with established hypoglycemic, hypolipidemic, antioxidant, hepatoprotective, pancreatoprotective activity in previous pharmacological study in vivo that including an inulin-containing component – Taraxacum officinale L. roots. Thus, the aim of this study was to determine the quantitative content of inulin and fructans in Taraxacum officinale L. Quantity content of inulin was determined by the difference between fructose as a product of enzymatic hydrolysis and D-fructose, a constituent of sucrose and free D-fructose, taking into account the empirical factor for the conversion of D-fructose from inulin. Carbohydrates used in the calculation of inulin were separated by gas chromatography-mass spectrometry after conversion into volatile derivatives as aldononitrile acetate. According to the results, Taraxacum officinale L. roots contain 436.29 mg/g of inulin. Total content of fructans was determined by spectrophotometric analysis as a product of acid hydrolysis of 5-(hydroxymethyl)furfural. The results show that Taraxacum officinale L. roots contain 39.49% of fructans. The obtained results are evidence that this plant component should be included in the herbal antidiabetic mixture, because due to the presence of fructans and inulin causes hypoglycemic, hypolipidemic and detoxification activity.


Pharmacia ◽  
2021 ◽  
Vol 68 (4) ◽  
pp. 721-730
Author(s):  
Alona Savych ◽  
Maryna Duchenko ◽  
Yulia Shepeta ◽  
Alexandra Davidenko ◽  
Olha Polonets

Medicinal plants and their combinations due to the wide range of biologically active substances can influence on various links of the pathogenetic mechanism of development of diabetes mellitus and its complications. One of such combinations is an antidiabetic herbal mixture (Urticae folia, Rosae frucrus, Myrtilli folia, Menthae folia and Taraxaci radices) with established hypoglycemic, hypolipidemic, antioxidant, hepatoprotective, pancreatoprotective activity in previous pharmacological study in vivo. Thus, the aim of this study was to identify and establish the content of carbohydrates in free and bound form in the plant components of antidiabetic herbal mixture. The carbohydrates were separated by gas chromatography-mass spectrometry after conversion into volatile derivatives as aldononitrile acetate. The monomeric composition of polysaccharides was studied after their hydrolysis to form monosaccharides and polyalcohols. The results of the quantitative study showed that the predominant carbohydrate in free form was saccharose in Urticae folia, L-fructose in Myrtilli folia, Rosae frucrus, Taraxaci radices and Menthae folia, L-glucose in Rosae frucrus. Concerning the determination of monomers of polysaccharides after hydrolysis, L-glucose prevailed in all plant components of antidiabetic herbal mixture. The chromatographic study revealed a number of polyalcohols that are important for the treatment and prevention of progression of diabetes mellitus and its complications, namely, mannitol and myo-inositol.


2019 ◽  
Vol 5 (4) ◽  
pp. 270-277 ◽  
Author(s):  
Vijay Kumar ◽  
Simranjeet Singh ◽  
Ragini Bhadouria ◽  
Ravindra Singh ◽  
Om Prakash

Holoptelea integrifolia Roxb. Planch (HI) has been used to treat various ailments including obesity, osteoarthritis, arthritis, inflammation, anemia, diabetes etc. To review the major phytochemicals and medicinal properties of HI, exhaustive bibliographic research was designed by means of various scientific search engines and databases. Only 12 phytochemicals have been reported including biologically active compounds like betulin, betulinic acid, epifriedlin, octacosanol, Friedlin, Holoptelin-A and Holoptelin-B. Analytical methods including the Thin Layer Chromatography (TLC), High-Performance Thin Layer Chromatography (HPTLC), High-Performance Liquid Chromatography (HPLC) and Liquid Chromatography With Mass Spectral (LC-MS) analysis have been used to analyze the HI. From medicinal potency point of view, these phytochemicals have a wide range of pharmacological activities such as antioxidant, antibacterial, anti-inflammatory, and anti-tumor. In the current review, it has been noticed that the mechanism of action of HI with biomolecules has not been fully explored. Pharmacology and toxicological studies are very few. This seems a huge literature gap to be fulfilled through the detailed in-vivo and in-vitro studies.


Metabolites ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 481
Author(s):  
Gemma G. Martínez-García ◽  
Raúl F. Pérez ◽  
Álvaro F. Fernández ◽  
Sylvere Durand ◽  
Guido Kroemer ◽  
...  

Autophagy is an essential protective mechanism that allows mammalian cells to cope with a variety of stressors and contributes to maintaining cellular and tissue homeostasis. Due to these crucial roles and also to the fact that autophagy malfunction has been described in a wide range of pathologies, an increasing number of in vivo studies involving animal models targeting autophagy genes have been developed. In mammals, total autophagy inactivation is lethal, and constitutive knockout models lacking effectors of this route are not viable, which has hindered so far the analysis of the consequences of a systemic autophagy decline. Here, we take advantage of atg4b−/− mice, an autophagy-deficient model with only partial disruption of the process, to assess the effects of systemic reduction of autophagy on the metabolome. We describe for the first time the metabolic footprint of systemic autophagy decline, showing that impaired autophagy results in highly tissue-dependent alterations that are more accentuated in the skeletal muscle and plasma. These changes, which include changes in the levels of amino-acids, lipids, or nucleosides, sometimes resemble those that are frequently described in conditions like aging, obesity, or cardiac damage. We also discuss different hypotheses on how impaired autophagy may affect the metabolism of several tissues in mammals.


Plants ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 599
Author(s):  
Živilė Tarasevičienė ◽  
Aloyzas Velička ◽  
Aurelija Paulauskienė

Phenolic compounds have a number of benefits to human health and can be used as preventive compounds for the development of some chronic diseases. Mentha plants are not only a good source of essential oils, but also contain significant levels of wide range of phenolic compounds. The aim of this research was to investigate the possibility to increase phenols content in Mentha plants under the foliar application with L-phenylalanine, L-tryptophan, L-tyrosine at two concentrations (100 mg L−1 and 200 mg L−1) and to create preconditions for using this plant for even more diverse purposes. Quantitative and qualitative analyses of phenols in mints were performed by HPLC method. Foliar application of amino acids increased the total phenol content from 1.22 to 3.51 times depending on the treatment and mint variety. The most pronounced foliar application to total phenols content was tryptophane especially in Mentha piperita “Swiss”. Mentha piperita “Swiss” was affected most by foliar application and the amount of total phenolic acids depending on the treatment ranged from 159.25 to 664.03 mg 100 g−1 (DW), respectively, non-sprayed and sprayed with tryptophane 100 mg L−1. Our results suggest that the biophenol content varies according to such factors as foliar application and variety, and every single mint variety has individual response to different applications of amino acids.


2021 ◽  
pp. jim-2021-001818
Author(s):  
Behnam Mahdavi ◽  
Toktam Hajar ◽  
Alireza Ghodsi ◽  
Majid Mohammadhosseini ◽  
Mohammad Mehmandost ◽  
...  

Undoubtedly, identification of the chemical composition of organic extracts or secondary metabolites of plant materials and evaluation of their potential bioactivity are among the main objectives of natural products-based investigations. In the present study, we report the chemical composition and antidiabetic activity of Sophora pachycarpa (Family Fabaceae) seeds extract (SPE) for the first time. First, the plant seeds were macerated in ethanol. The extract was subjected to analysis on a gas chromatography-mass spectrometry (GC-MS) system to identify the chemical composition. In vivo assay was run to evaluate the antidiabetic activity of the extract. Forty mice were divided into four groups, namely healthy mice, untreated diabetic mice, diabetic mice treated with metformin and diabetic mice treated with SPE. The antidiabetic activity of SPE was analyzed using three statistical methods, namely analysis of variance, K-means, and principal component analysis. According to GC-MS analysis, alkaloids of sophoridine, oleic acid, linoleic acid, and n-hexadecanoic acid were among the most abundant constituent components of SPE. The extract also exhibited a notable antidiabetic activity and remarkably decreased the levels of alkaline phosphatase (ALP), serum glutamic pyruvic transaminase (SGPT), and serum glutamic oxaloacetic transaminase (SGOT) enzymes. The statistical analyses revealed there are no significant differences between the ability of SPE and metformin in the regulation of fasting blood sugar level and liver enzymes (ALP, SGPT, and SGOT). A quinolizidine alkaloid, namely sophoridine, along with fatty acids, viz oleic, linoleic, and n-hexadecanoic acid, were characterized as the major compounds in S. tachycardia seeds extract. The plant extract was also found as a potent agent to reduce blood glucose and liver enzymes.


Author(s):  
Deep Chhavi Anand ◽  
Rishikesh Meena ◽  
Vidya Patni

Objective: The aim of the present study was to develop a callus induction protocol and comparative study of therapeutic phytochemicals present in in vivo leaf and in vitro callus extracts through Gas Chromatography-Mass Spectrometry analysis.Methods: Murashige and Skoog media was used as culture media for callus induction. In vitro callus induction protocol was developed by studying the effects of various plant growth regulators like auxin, 2, 4-D (2,4-dichlorophenoxyacetic acid), NAA (naphthalic acetic acid), alone and in combination with cytokinin BAP (benzyl aminopurine), on leaf and stem explants. The GC-MS analysis of Ampelocissus latifolia was carried out on Shimadzu QP-2010 plus with thermal desorption system TD 20 to study the phytochemical profile.Results: In vitro callus induction protocol was developed for the plant and callusing was done from leaf and stem explants of Ampelocissus latifolia. The best result for callus induction was obtained using leaf explant, and callus production were maximum in Murashige and Skoog medium fortified with BAP (0.5 mg/l) and NAA (1.0 mg/l). Major compounds identified in the GC-MS analysis were Campesterol, Stigmasterol, Beta-Sitosterol, Docosanol, Dodecanoic acid, etc., in in vitro extract and Beta Sitosterol, Tocopherol, Squalene, Bergamot oil, Margarinic acid, Hexadecanoic acid, etc., in in vivo extract. The different active phytochemicals identified have been found to possess a wide range of biological activities, thus this analysis forms a basis for the biological characterization and importance of the compounds identified for human benefits.Conclusion: This is the first report on callus induction in Ampelocissus latifolia. From the results obtained through the in vitro callus induction and its comparative GCMS analysis with in vivo extract, it is revealed that Ampelocissus latifolia contains various bioactive compounds that are of importance for phytopharmaceutical uses. The GCMS analysis revealed that the amount of Beta-sitosterol and 5-Hydroxymethylfurfural (HMF) was very high in in vitro extract as compared to in vivo extract.


2006 ◽  
Vol 291 (1) ◽  
pp. E190-E197 ◽  
Author(s):  
Abdul Jaleel ◽  
Vandana Nehra ◽  
Xuan-Mai T. Persson ◽  
Yves Boirie ◽  
Maureen Bigelow ◽  
...  

Advances in quantitative proteomics have facilitated the measurement of large-scale protein quantification, which represents net changes in protein synthesis and breakdown. However, measuring the rate of protein synthesis is the only way to determine the translational rate of gene transcripts. Here, we report a technique to measure the rate of incorporation of amino acids from ingested protein labeled with stable isotope into individual plasma proteins. This approach involves three steps: 1) production of stable isotope-labeled milk whey protein, oral administration of this intrinsically labeled protein, and subsequent collection of blood samples; 2) fractionation of the plasma and separation of the individual plasma proteins by a combination of anion exchange high-pressure liquid chromatography and gel electrophoresis; and 3) identification of individual plasma proteins by tandem mass spectrometry and measurement of stable isotopic enrichment of these proteins by gas chromatography-mass spectrometry. This method allowed the measurement of the fractional synthesis rate (FSR) of 29 different plasma proteins by using the same precursor pool. We noted a 30-fold difference in FSR of different plasma proteins with a wide range of physiological functions. This approach offers a tremendous opportunity to study the regulation of plasma proteins in humans in many physiological and pathological states.


2017 ◽  
Vol 123 (5) ◽  
pp. 1101-1109 ◽  
Author(s):  
Maria A. Serrat ◽  
Gabriela Ion

Bones elongate through endochondral ossification in cartilaginous growth plates located at ends of primary long bones. Linear growth ensues from a cascade of biochemical signals initiated by actions of systemic and local regulators on growth plate chondrocytes. Although cellular processes are well defined, there is a fundamental gap in understanding how growth regulators are physically transported from surrounding blood vessels into and through dense, avascular cartilage matrix. Intravital imaging using in vivo multiphoton microscopy is one promising strategy to overcome this barrier by quantitatively tracking molecular delivery to cartilage from the vasculature in real time. We previously used in vivo multiphoton imaging to show that hindlimb heating increases vascular access of large molecules to growth plates using 10-, 40-, and 70-kDa dextran tracers. To comparatively evaluate transport of similarly sized physiological regulators, we developed and validated methods for measuring uptake of biologically active IGF-I into proximal tibial growth plates of live 5-wk-old mice. We demonstrate that fluorescently labeled IGF-I (8.2 kDa) is readily taken up in the growth plate and localizes to chondrocytes. Bioactivity tests performed on cultured metatarsal bones confirmed that the labeled protein is functional, assessed by phosphorylation of its signaling kinase, Akt. This methodology, which can be broadly applied to many different proteins and tissues, is relevant for understanding factors that affect delivery of biologically relevant molecules to the skeleton in real time. Results may lead to the development of drug-targeting strategies to treat a wide range of bone and cartilage pathologies. NEW & NOTEWORTHY This paper describes and validates a novel method for imaging transport of biologically active, fluorescently labeled IGF-I into skeletal growth plates of live mice using multiphoton microscopy. Cellular patterns of fluorescence in the growth plate were completely distinct from our prior publications using biologically inert probes, demonstrating for the first time in vivo localization of IGF-I in chondrocytes and perichondrium. These results form important groundwork for future studies aimed at targeting therapeutics into growth plates.


Author(s):  
João Junqueira ◽  
Michelle do Nascimento ◽  
Lucas da Costa ◽  
Lincoln Romualdo ◽  
Francisco de Aquino ◽  
...  

Xylopia aromatica (Lam.) Mart. (Annonaceae) is a typical species from the Brazilian cerrado that presents medicinal properties. The plant is distinguished by its large white flowers which produce a pleasant fragrance. X. aromatica is characterized by a wide range of medicinal application. These characteristics have motivated us to investigate the flowers volatile organic compounds (VOCs) via in vivo and in vitro protocols by a headspace solid-phase microextraction (HS‑SPME) technique combined with gas chromatography-mass spectrometry (HS-SPME/GC‑MS). Four different fibers, extraction times and temperatures were the parameters changed to lead to the maximum profiling of the volatile constituents. Data were analyzed using principal component analysis (PCA). A total of 77 VOCs were extracted from the floral scent, with 52 and 68 extracted from in vivo and in vitro sampling, respectively, of which 48 were reported for the first time in the literature as volatile constituents from X. aromatica flowers. The extraction and identification of VOCs were successfully performed through HS-SPME/GC-MS. The PCA data allowed the identification of parameters that led to the maximum number of VOCs, which were polyacrylate (PA) and carboxen/polydimethylsiloxane (CAR/PDMS) fibers, 60 min extraction time and temperature of 29.0 °C. Among the volatile constituents identified, sesquiterpenes predominated, comprising about 61.04%.


Sign in / Sign up

Export Citation Format

Share Document