scholarly journals Reproductive responses of the male Brandt’s vole, Lasiopodomys brandtii (Rodentia: Cricetidae) to tannic acid

2020 ◽  
Vol 37 ◽  
pp. 1-11
Author(s):  
Xin Dai ◽  
Ling-Yu Zhou ◽  
Ting-Ting Xu ◽  
Qiu-Yue Wang ◽  
Bin Luo ◽  
...  

Tannins are polyphenols that are present in various plants, and potentially contain antioxidant properties that promote reproduction in animals. This study investigated how tannic acid (TA) affects the reproductive parameters of male Brandt’s voles, Lasiopodomys brandtii (Radde, 1861). Specifically, the anti-oxidative level of serum, autophagy in the testis, and reproductive physiology were assessed in males treated with TA from the pubertal stage. Compared to the control, low dose TA enhanced relative testis and epididymis weight and sperm concentration in the epididymis, and significantly increased the level of serum superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px). mRNA levels of autophagy related genes LC3 and Beclin1 decreased significantly with low dose TA compared to the control. However, compared to the control, high dose TA sharply reduced the levels of serum SOD, GSH-Px, CAT, serum testosterone (T), and mRNA level in steroidogenic acute regulatory protein (StAR) in the testis. Both sperm abnormality and mortality increased with high dose TA compared to the control and low dose TA. Collectively, this study demonstrated that TA treatment during puberty had a dose-dependent effect on the reproductive responses of male Brandt’s voles. TA might mediate autophagy in the testis, through both indirect and direct processes. TA mainly affected the reproductive function of male Brandt’s voles by regulating anti-oxidative levels. This study advances our understanding of the mechanisms by which tannins influence reproduction in herbivores.

Author(s):  
Xin Dai ◽  
Xiao-Feng Sun ◽  
Ai-Qin Wang ◽  
Wanhong Wei ◽  
Sheng-Mei Yang

Gallic acid (GA), a phenol that is present in various plants, potentially contains antioxidant properties. This study aimed to investigate the effects of GA on the reproduction of adolescent male Brandt’s voles (Lasiopodomys brandtii (Radde, 1861)). Antioxidant levels and apoptosis in the testis, as well as reproductive physiology, were evaluated in adolescent males treated with GA. The results showed that a low dose of GA enhanced relative epididymis weight and the sperm density in the epididymis, increased the mRNA levels of steroidogenic acute regulatory protein in the testis, and reduced the percentages of abnormal and dead sperm. In addition, a low dose of GA significantly increased the levels of superoxide dismutase, catalase, and glutathione peroxidase, and decreased the level of malondialdehyde in the testis, as well as the mRNA and protein levels of the apoptosis related gene, caspase-3. However, a high dose of GA sharply reduced the average diameter of the seminiferous tubules compared to a low dose. Collectively, these findings demonstrate that GA treatment during puberty affects the reproductive responses of male Brandt’s voles in a dose-dependent manner by regulating antioxidant levels and apoptosis.


1992 ◽  
Vol 9 (3) ◽  
pp. 257-263 ◽  
Author(s):  
D. L. Russell-Jones ◽  
M. Rattray ◽  
V. J. Wilson ◽  
R. H. Jones ◽  
P. H. Sönksen ◽  
...  

ABSTRACT There is evidence that the hormonal control of hepatic IGF-I production is mediated by GH and insulin. To elucidate the role of these hormones further we administered s.c. or i.p. insulin (at 2·5 and 5·0 IU/day) and/or GH (0·8 IU/day) to rats made diabetic with streptozotocin 16 days previously. Hepatic IGF-I production was then assessed by quantifying hepatic IGF-I mRNA levels by autoradiography of Northern blots. Diabetes resulted in a fivefold reduction in hepatic IGF-I mRNA levels (optical density (OD) of the 0·7–1·1 kb band: controls, 1·3±0·09; diabetics, 0·28±0·08; P<0·01), which was not significantly changed by treatment with s.c. insulin (OD: low dose, 0·55±0·05; high dose, 0·58±0·05) or low dose i.p. insulin (OD: 0·40±0·03). High dose i.p. insulin enhanced hepatic IGF-I mRNA levels (OD: 0·93±0·23) compared with diabetic rats (P<0·01) and those given high dose s.c. insulin (P<0·04), despite the blood glucose values being similar in the treated groups (i.p., 4·72±0·29 mmol/l; s.c., 3·32±0·03 mmol/l). Administration of GH alone partially restored the hepatic IGF-I mRNA level (OD: GH-treated, 1·00±0·05; diabetic, 0·28±0·08; P<0·01), whilst having no effect on blood glucose values (diabetic, 36·35±0·45 mmol/l; GH-treated, 38·65±2·39 mmol/l). Additional administration of s.c. insulin completely restored IGF-I mRNA levels to those of controls (OD: low dose, 1·35±0·14; high dose, 1·27 ± 0·18). These observations indicate that insulin and GH are required for full expression of hepatic IGF-I mRNA and that insulin given i.p. is more potent than that given s.c. at stimulating hepatic synthesis of IGF-I.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Ying Hou ◽  
Peipei Yuan ◽  
Yang Fu ◽  
Qi Zhang ◽  
Yaxin Wei ◽  
...  

Background. Duzhong Butiansu (DZBTS) prescription contains many traditional Chinese medicines and has been shown to have a curative effect on male fertility. However, the efficacy and mechanism of DZBTS in the treatment of male infertility induced by heat stress have not been reported. The aim of the present study is to elucidate the effect and mechanism of DZBTS on spermatogenic function of a heat stress model in rats. Methods. Male Wistar rats (280–320 g) were given different doses of DZBTS (0.4853 g/kg/d or 0.9707 g/kg/d), Shengjing capsule (0.56 g/kg/d), or double distilled water for 15 days. A 43°C hot water bath for 30 minutes was used to stimulate the testis of rats. Sperm count, sperm motility, the organ index of kidney and gonadal organs, serum sex hormone levels, and serum oxidising reaction index were measured. Haematoxylin and eosin (HE) staining was used to observe the morphology of the testis and kidney. The expression of Hsp70 in testes was observed by immunofluorescence. The changes in heat stress, reproductive-related protein, and mRNA were measured by western blot assay and RT-qPCR. Results. Heat stress downregulated the levels of sex hormone (P<0.05 or P<0.01) and its receptor androgen receptor (AR) protein expression and mRNA (P<0.01) in rats. Meanwhile, heat stress downregulated the levels of CAMP-responsive element-binding (CREB1) protein and mRNA (P<0.01), which are involved with spermatogenesis. Heat stress also decreased the oxidative damage index. Furthermore, Hsp70 and the heat shock transcription factor 1 (HSF1) protein pathway and mRNA level were overactivated (P<0.05 or P<0.01). Finally, the organ coefficients of the kidney and gonadal organs of rats were decreased. The sperm concentration and motility also decreased significantly (P<0.01). DZBTS could recover these changes induced by heat stress. Conclusions. Our results for the first time have found that DZBTS can improve spermatogenesis disorder in a heat stress model in rats, which may be mainly by regulating AR, sperm regulatory protein CREB1, and the HSF/Hsp70 signaling pathway to decrease oxidative stress.


2015 ◽  
Vol 37 (5) ◽  
pp. 1750-1758 ◽  
Author(s):  
Eleni Stamoula ◽  
Theofanis Vavilis ◽  
Eleni Aggelidou ◽  
Aikaterini Kaidoglou ◽  
Angeliki Cheva ◽  
...  

Background/Aims: Increasing amounts of the neurotransmitter glutamate are associated with excitotoxicity, a phenomenon related both to homeostatic processes and neurodegenerative diseases such as multiple sclerosis. Methods: PC12 cells (rat pheochromocytoma) were treated with various concentrations of the non-essential amino acid glutamate for 0.5-24 hours. The effect of glutamate on cell morphology was monitored with electron microscopy and haematoxylin-eosin staining. Cell survival was calculated with the MTT assay. Expression analysis of chaperones associated with the observed phenotype was performed using either Western Blotting at the protein level or qRT-PCR at the mRNA level. Results: Administration of glutamate in PC12 cells in doses as low as 10 μM causes an up-regulation of GRP78, GRP94 and HSC70 protein levels, while their mRNA levels show the opposite kinetics. At the same time, GAPDH and GRP75 show reduced protein levels, irrespective of their transcriptional rate. On a cellular level, low concentrations of glutamate induce an autophagy-mediated pro-survival phenotype, which is further supported by induction of the autophagic marker LC3. Conclusion: The findings in the present study underline a discrete effect of glutamate on neuronal cell fate depending on its concentration. It was also shown that a low dose of glutamate orchestrates a unique expression signature of various chaperones and induces cell autophagy, which acts in a neuroprotective fashion.


1991 ◽  
Vol 3 (2) ◽  
pp. 215 ◽  
Author(s):  
U Michel ◽  
Z Krozowski ◽  
J McMaster ◽  
JH Yu ◽  
JK Findlay

Granulosa cell cultures derived from diethylstilboestrol-treated immature rats were used to study the in vitro effect of pregnant mare serum gonadotrophin (PMSG) on steady state mRNA levels for the inhibin alpha and beta A subunits and the secretion of immunoreactive inhibin and progesterone. After 48 h treatment the dose-response curve of PMSG revealed a maximum stimulation (2.5-3.5 fold) of cytosolic alpha and beta A mRNAs over the range of 1 to 10 mU PMSG mL-1, with corresponding stimulation of inhibin secretion. A high dose of PMSG (160-500 mU mL-1) clearly suppressed inhibin alpha mRNA levels as well as inhibin secretion, whereas progesterone (P) was maximally stimulated (up to 600 fold). Although the level of cytosolic inhibin beta A subunit mRNA was also down-regulated by a high concentration of PMSG in the culture medium, the doses required to suppress its mRNA level to less than those of the control varied. These data demonstrate that low doses of follicle stimulating hormone/luteinizing hormone (FSH/LH)-like (PMSG) activity enhances and high doses decrease the steady-state mRNA levels of inhibin in rat granulosa cells in vitro; this biphasic regulation in vitro reflects the differential regulation of inhibin secretion observed during the rat oestrous cycle.


2018 ◽  
Vol 46 (4) ◽  
pp. 1727-1736 ◽  
Author(s):  
Jie-Zhou Wu ◽  
Peng-Cheng Liu ◽  
Run Liu ◽  
Ming Cai

Background/Aims: Chronic alcohol abuse is an important risk factor for osteopenia. However, few studies have focused on the efficacy and mechanism of action of icariin on alcohol-induced osteopenia. The aim of this study was to investigate the efficacy and underlying mechanism of action of icariin in the treatment of chronic high-dose alcohol-induced osteopenia in a rat model. Methods: Thirty-six adult male Sprague-Dawley rats were randomly divided into four groups: sham, alcohol, and low-dose and high-dose icariin groups. Bone volume fraction (BV/TV), bone mineral density (BMD), bone biomechanical properties, and bone morphology were assessed after 16 weeks. Reverse-transcription PCR was used to detect mRNA expression levels of alkaline phosphatase (ALP), collagen type I (Col I), osteocalcin (OC), runt-related transcription factor 2 (Runx2), bone morphogenetic protein-2 (BMP-2), and osteoprotegerin (OPG). Results: Bone metabolic markers and biomechanical properties in the alcohol group were decreased significantly compared with the sham group. BV/TV, BMD, mineral apposition rate (MAR), percent trabecular area (%Tb.Ar), and bone biomechanical properties were elevated in the low-dose and high-dose icariin groups relative to the alcohol group. ALP, Col I, OC, Runx2, BMP-2, and OPG mRNA levels in the icariin group were significantly elevated in comparison with the alcohol group. Conclusion: Icariin can prevent overall progression of chronic high-dose alcohol-induced osteopenia in a rat model, in a dose-dependent manner. Icariin promotes bone formation and inhibits bone loss, and effectively restores bone structure and strength in chronic high-dose alcohol-induced osteopenic rats. Bone metabolism reversal is evidenced by increased BV/TV, BMD, MAR, %Tb.Ar, and biomechanical properties and elevated ALP, Col I, OC, Runx2, BMP-2, and OPG mRNA levels.


2019 ◽  
Vol 2019 ◽  
pp. 1-8 ◽  
Author(s):  
Qingtao Yang ◽  
Xuxia Sui ◽  
Junjun Cao ◽  
Caixia Liu ◽  
Shukai Zheng ◽  
...  

Testosterone plays an important prenatal role in male testis development. Bisphenol A (BPA) exposure during pregnancy affects testosterone levels and germ cell apoptosis of male pups, but little information is available for the mechanism. The aim of the present study was to investigate the mechanism by which BPA alters testosterone levels and germ cell apoptosis. Pregnant female C57BL/6J mice, throughout gestation, had access to drinking water containing BPA at 5 and 50 μg/mL. Male pups were euthanized on postnatal days (PNDs) 1, 14, and 35. Relative to control, BPA exposure at 5 and 50 μg/ml decreased testosterone level, as measured by chemiluminescent immunoassay, on PND14. Real-time PCR indicated mRNA levels for steroidogenic acute regulatory protein (StAR), cholesterol side-chain cleavage enzyme (CYP11A1), and 3-β-hydroxysteroid dehydrogenase/△-5-4 isomerase (3β-HSD) were significantly lower in the BPA pups compared to control. Additionally, BPA increased the percentage of TUNEL-positive seminiferous tubules, decreased the mRNA level of Bcl-2, and increased Bax expression, indicative of increased apoptosis. These results suggest that BPA exposure in utero decreases the testosterone concentration by decreasing steroidogenic enzymes (StAR, CYP11A1, and 3β-HSD). Furthermore, BPA exposure increases the apoptosis of germ cells, which is associated with proapoptotic changes in the levels of Bcl-2 and Bax.


2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Daniel Castrogiovanni ◽  
Luisina Ongaro ◽  
Guillermina Zuburía ◽  
Andrés Giovambattista ◽  
Eduardo Spinedi

Rats neonatally treated with monosodium L-glutamate (MSG) are deeply dysfunctional in adulthood. We explored the effect of an oral low dose of metformin treatment in male MSG rats on adipoinsular axis and visceral adipose tissue (VAT) dysfunctions, in both basal (nonfasting) and endotoxemia conditions. MSG rats, treated or not treated with metformin (30 days prior to experimentation), and control litter-mates (CTR) were studied at 90 days of age. Peripheral concentrations of glucose, lipids, and hormones were determined in basal and post-lipopolysaccharide (LPS) treatment conditions. Food intake and body weight (BW) were recorded and VAT mass and leptin mRNA levels were evaluated. Data indicated that MSG rats were lighter and displayed hypercorticosteronemia, hypophagia, adipoinsular axis hyperactivity, and enhanced VAT mass associated with an increased leptin gene expression. Interestingly, metformin-treated MSG rats corrected BW catch-up and counteracted VAT (mass and leptin mRNA level) and adipoinsular axis (basal and post-LPS) dysfunctions. Thus metformin treatment in MSG rats is able to correct several VAT and metabolic-endocrine dysfunctions. Our study suggests that a low-dose metformintherapy is effective to correct, at least in part, adipoinsular axis dysfunction in hypertrophic obese phenotypes, such as that of the human Cushing syndrome.


2009 ◽  
Vol 87 (7) ◽  
pp. 531-538 ◽  
Author(s):  
Liping Fang ◽  
Hong Li ◽  
Chaoshu Tang ◽  
Bin Geng ◽  
Yongfen Qi ◽  
...  

The present study investigated the role of the endogenous cystathionine γ-lyase (CSE) / hydrogen sulfide pathway in the pathogenesis of pulmonary fibrosis. Rats treated with intratracheal bleomycin were exposed either to the H2S donor NaHS or to saline. The results on day 7 showed that plasma H2S concentration and pulmonary CSE activity (H2S production rate) were significantly lower in rats treated with bleomycin and saline (fibrosis-alone) than in controls, whereas on day 28 plasma H2S concentration was higher and pulmonary CSE activity was the same as that of controls. The relative CSE mRNA level in the lungs of rats treated with bleomycin was significantly higher than control values on days 7 and 28. After exposure to NaHS, the total lung hydroxyproline content and the malondialdehyde (MDA) content were both significantly lower, with no difference observed between NaHS high-dose and low-dose treatments. Further, MDA formation stimulated by the free radical-generating system (FRGS) in vitro was lower in lung tissue incubated with NaHS than it was in tissue incubated with FRGS alone. These results suggest that NaHS administration ameliorated the pulmonary fibrosis induced by bleomycin in rats and that this protective effect of H2S may be mediated by its antioxidative action.


2021 ◽  
Vol 11 ◽  
Author(s):  
Javier Pardo-Medina ◽  
Gabriel Gutiérrez ◽  
M. Carmen Limón ◽  
Javier Avalos

The proteins of the White Collar 1 family (WC) constitute a major class of flavin photoreceptors, widely distributed in fungi, that work in cooperation with a WC 2 protein forming a regulatory complex. The WC complex was investigated in great detail in Neurospora crassa, a model fungus in photobiology studies, where it controls all its major photoresponses. The fungus Fusarium fujikuroi, a model system in the production of secondary metabolites, contains a single WC-1 gene called wcoA. The best-known light response in this fungus is the photoinduction of the synthesis of carotenoids, terpenoid pigments with antioxidant properties. Loss of WcoA in F. fujikuroi results in a drastic reduction in the mRNA levels of the carotenoid genes, and a diversity of morphological and metabolic changes, including alterations in the synthesis of several secondary metabolites, suggesting a complex regulatory role. To investigate the function of WcoA, the transcriptome of F. fujikuroi was analyzed in the dark and after 15-, 60- or 240-min illumination in a wild strain and in a formerly investigated wcoA insertional mutant. Using a threshold of four-fold change in transcript levels, 298 genes were activated and 160 were repressed in the wild strain under at least one of the light exposures. Different response patterns were observed among them, with genes exhibiting either fast, intermediate, and slow photoinduction, or intermediate or slow repression. All the fast and intermediate photoresponses, and most of the slow ones, were lost in the wcoA mutant. However, the wcoA mutation altered the expression of a much larger number of genes irrespective of illumination, reaching at least 16% of the annotated genes in this fungus. Such genes include many related to secondary metabolism, as well as others related to photobiology and other cellular functions, including the production of hydrophobins. As judged by the massive transcriptomic changes exhibited by the wcoA mutant in the dark, the results point to WcoA as a master regulatory protein in F. fujikuroi, in addition to a central function as the photoreceptor responsible for most of the transcriptional responses to light in this fungus.


Sign in / Sign up

Export Citation Format

Share Document