Hydrogen sulfide attenuates the pathogenesis of pulmonary fibrosis induced by bleomycin in rats

2009 ◽  
Vol 87 (7) ◽  
pp. 531-538 ◽  
Author(s):  
Liping Fang ◽  
Hong Li ◽  
Chaoshu Tang ◽  
Bin Geng ◽  
Yongfen Qi ◽  
...  

The present study investigated the role of the endogenous cystathionine γ-lyase (CSE) / hydrogen sulfide pathway in the pathogenesis of pulmonary fibrosis. Rats treated with intratracheal bleomycin were exposed either to the H2S donor NaHS or to saline. The results on day 7 showed that plasma H2S concentration and pulmonary CSE activity (H2S production rate) were significantly lower in rats treated with bleomycin and saline (fibrosis-alone) than in controls, whereas on day 28 plasma H2S concentration was higher and pulmonary CSE activity was the same as that of controls. The relative CSE mRNA level in the lungs of rats treated with bleomycin was significantly higher than control values on days 7 and 28. After exposure to NaHS, the total lung hydroxyproline content and the malondialdehyde (MDA) content were both significantly lower, with no difference observed between NaHS high-dose and low-dose treatments. Further, MDA formation stimulated by the free radical-generating system (FRGS) in vitro was lower in lung tissue incubated with NaHS than it was in tissue incubated with FRGS alone. These results suggest that NaHS administration ameliorated the pulmonary fibrosis induced by bleomycin in rats and that this protective effect of H2S may be mediated by its antioxidative action.

2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Subhashis Paul ◽  
Debabrata Modak ◽  
Sutanuka Chattaraj ◽  
Deblina Nandi ◽  
Aditi Sarkar ◽  
...  

Abstract Background Aloe vera leaf gel has proven efficacious roles in the amelioration of several human diseases and illness-conditions. Specific purified gel-derived bio-constituents as well as the naturally harvested unprocessed A. vera gel have shown promise in modifying systemic inflammation. However, the synergistic role of natural herbal remedies, a mainstay of traditional Indian Ayurveda, has not been evaluated rigorously in this plant. In this study, the prevention of membrane lysis and protein denaturation in the presence of A. vera gel homogenate up to the concentration of 1000 μg/ml of gel has been assessed in vitro. Also, regulation of expression of inflammation-mediator genes (TNF-α and Cox-2) has been investigated in vivo in Freund’s complete adjuvant (FCA)-induced inflammatory arthritic Wistar albino rats in a 28-day long study following the daily oral supplementation of Aloe vera gel homogenate doses up to 0.40 and 0.80 g/kg body weight (low-dose and high-dose groups respectively). Results Our results indicated that A. vera gel homogenate inhibits hypotonicity-induced (74.89 ± 1.26%) and heat-induced (20.86 ± 0.77%) RBC membrane lyses respectively at a concentration of 1000 μg/ml, compared to indomethacin standard (80.52 ± 0.65% and 43.98 ± 1.52% respectively at 200 μg/ml concentration). The similar concentration of gel also showed 39.35 ± 4.25% inhibition of protein denaturation compared to standard diclofenac sodium (46.74 ± 1.84% at 100 μg/ml concentration) in vitro. When assessed in vivo, TNF-α expression was found to be decreased by 35.88% and 38.52%, and Cox-2 expression was found to be decreased by 31.65% and 34.96%, in low-dose and high-dose groups respectively, when compared to the arthritic controls. Conclusions Our findings justify the role of unprocessed A. vera gel homogenate in preventing tissue damage and in the downregulation of TNF-α and Cox-2 gene expressions for the immune-modulation of inflammatory arthritis condition.


2019 ◽  
Vol 2019 ◽  
pp. 1-8 ◽  
Author(s):  
Danli Kong ◽  
Yan Yan ◽  
Xiao-Yi He ◽  
Huihuang Yang ◽  
BiYu Liang ◽  
...  

Objective. To observe the effects of resveratrol (Res) on the antioxidative function and estrogen level in an Alzheimer’s disease (AD) mouse model. Methods. First, we examined the effects of Res on an AD mice model. SAMP8 mice were selected as the model, and normal-aging SAMR1 mice were used as the control group. The model mice were randomly divided into three groups: a model group, high-dose Res group (40mg/kg, intraperitoneal (ip)), and low-dose Res group (20mg/kg, ip). After receiving medication for 15 days, the mice were subjected to the water maze test to assess their spatial discrimination. The spectrophotometric method was used to detect the activity of superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), and catalase (CAT) as well as the malondialdehyde (MDA) content. Quantitative PCR (q-PCR) was used to detect SOD, GSH-Px, CAT, and heme oxygenase-1 (HO-1) mRNA level changes. Western blot analysis detected HO-1 and Nrf2 protein expression. Second, we researched the effect of Res on the estrogen level in the SAMP8 model mice. The model mice were randomly divided into four groups: a model group, estrogen replacement group (0.28 mg/kg, intramuscular (im), estradiol benzoate), high-dose Res group (5 mg/kg, im), and low-dose Res group (2.5 mg/kg, im). The mice were injected, once every three days, for 5 weeks. Q-PCR was used to detect brain tissue mRNA expression changes. Western blot analysis detected ERα, ERβ, and ChAT protein expression. An enzyme-linked immunosorbent assay (ELISA) kit was used to detect the expression of E2 and amyloid β protein (Aβ) in brain tissue. Results. Compared with the control treatment, Res could improve the spatial abilities of the mice to a certain extent and also increase the expression of SOD, GSH-Px, CAT, and HO-1 at the mRNA level (P<0.05). In addition, enhanced SOD, GSH-Px, and CAT activities and HO-1 protein levels and decreased MDA content (P<0.05) were detected in the brain tissue of the Res-treated mice. The cytoplasmic Nrf2 content in the Res-treated mice was also decreased while the nuclear Nrf2 content and the nuclear translation rate of Nrf2 were increased (P<0.05). Res could decrease the expression of ERβ in the brain tissue at the mRNA and protein levels and the expression of Aβ in the brain tissue at the protein level. Res could also increase the mRNA and protein expression of ERα and ChAT and the protein expression of estradiol in the brain tissue. Conclusion. Res can increase the antioxidant capacity of AD models through the Nrf2/HO-1 signaling pathway. In addition, Res can enhance estrogen levels in an AD model. These findings provide a new idea for the treatment of AD.


1986 ◽  
Vol 111 (3) ◽  
pp. 455-462 ◽  
Author(s):  
P. Södersten ◽  
P. Eneroth ◽  
T. Hansson ◽  
A. Mode ◽  
D. Johansson ◽  
...  

ABSTRACT Sexual behaviour was induced in castrated male rats with oestradiol-17β- or testosterone-filled constant-release implants. Testosterone-induced sexual behaviour was unaffected by treatment with the 5α-reductase inhibitor 17β-N,N-diethylcarbamoyl-4-aza-5α-androstan-3-one (4-MA; 16·7 mg/day) but treatment with the aromatization inhibitor 1,4,6-androstatriene-3,17-dione (ATD; 10 mg/day) prevented testosterone from inducing the behaviour. Sexual behaviour could be activated in castrated rats treated with testosterone plus ATD by treatment with 4-MA or with implants filled with a low dose of oestradiol. Lordosis behaviour induced in ovariectomized rats with testosterone-filled implants and progesterone was blocked by ATD treatment and could not be activated with 4-MA but oestradiol implants restored the display of lordosis in the testosterone plus ATD-treated females. 4-MA inhibited the in-vitro formation of [14C]5α-dihydrotestosterone from [14C]testosterone by combined preoptic and hypothalamic tissue at all doses tested and a high dose of oestradiol exerted a similar effect. The results suggest that androgen aromatization is required for testosterone-activated female sexual behaviour but not for testosterone-activated male sexual behaviour. It is suggested that oestradiol normally acts to control the sexual behaviour of male rats by modifying neural androgen metabolism. J. Endocr. (1986) 111, 455–462


2020 ◽  
Vol 22 (1) ◽  
pp. 176
Author(s):  
Toshiaki Iba ◽  
Jerrold H. Levy ◽  
Koichiro Aihara ◽  
Katsuhiko Kadota ◽  
Hiroshi Tanaka ◽  
...  

(1) Background: The endothelial glycocalyx is a primary target during the early phase of sepsis. We previously reported a newly developed recombinant non-fucosylated antithrombin has protective effects in vitro. We further evaluated the effects of this recombinant antithrombin on the glycocalyx damage in an animal model of sepsis. (2) Methods: Following endotoxin injection, in Wistar rats, circulating levels of hyaluronan, syndecan-1 and other biomarkers were evaluated in low-dose or high-dose recombinant antithrombin-treated animals and a control group (n = 7 per group). Leukocyte adhesion and blood flow were evaluated with intravital microscopy. The glycocalyx was also examined using side-stream dark-field imaging. (3) Results: The activation of coagulation was inhibited by recombinant antithrombin, leukocyte adhesion was significantly decreased, and flow was better maintained in the high-dose group (both p < 0.05). Circulating levels of syndecan-1 (p < 0.01, high-dose group) and hyaluronan (p < 0.05, low-dose group; p < 0.01, high-dose group) were significantly reduced by recombinant antithrombin treatment. Increases in lactate and decreases in albumin levels were significantly attenuated in the high-dose group (p < 0.05, respectively). The glycocalyx thickness was reduced over time in control animals, but the derangement was attenuated and microvascular perfusion was better maintained in the high-dose group recombinant antithrombin group (p < 0.05). (4) Conclusions: Recombinant antithrombin maintained vascular integrity and the microcirculation by preserving the glycocalyx in this sepsis model, effects that were more prominent with high-dose therapy.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Yi Xin She ◽  
Qing Yang Yu ◽  
Xiao Xiao Tang

AbstractInterleukins, a group of cytokines participating in inflammation and immune response, are proved to be involved in the formation and development of pulmonary fibrosis. In this article, we reviewed the relationship between interleukins and pulmonary fibrosis from the clinical, animal, as well as cellular levels, and discussed the underlying mechanisms in vivo and in vitro. Despite the effects of interleukin-targeted treatment on experimental pulmonary fibrosis, clinical applications are lacking and unsatisfactory. We conclude that intervening in one type of interleukins with similar functions in IPF may not be enough to stop the development of fibrosis as it involves a complex network of regulation mechanisms. Intervening interleukins combined with other existing therapy or targeting interleukins affecting multiple cells/with different functions at the same time may be one of the future directions. Furthermore, the intervention time is critical as some interleukins play different roles at different stages. Further elucidation on these aspects would provide new perspectives on both the pathogenesis mechanism, as well as the therapeutic strategy and drug development.


2021 ◽  
Vol 20 ◽  
pp. 153303382199528
Author(s):  
Qing Lv ◽  
Qinghua Xia ◽  
Anshu Li ◽  
Zhiyong Wang

This study was performed to investigate the role of interleukin-1 receptor accessory protein (IL1RAP) in stomach carcinoma in vitro and in vivo, determine whether IL1RAP knockdown could regulate the development of stomach carcinoma, and elucidate the relationship between IL1RAP knockdown and inflammation by tumor microenvironment-related inflammatory factors in stomach carcinoma. We first used TCGA and GEPIA systems to predict the potential function of IL1RAP. Second, western blot and RT-PCR were used to analyze the expression, or mRNA level, of IL1RAP at different tissue or cell lines. Third, the occurrence and development of stomach carcinoma in vitro and in vivo were observed by using IL1RAP knockdown lentivirus. Finally, the inflammation of stomach carcinoma in vitro and in vivo was observed. Results show that in GEPIA and TCGA systems, IL1RAP expression in STAD tumor tissue was higher than normal, and high expression of IL1RAP in STAD patients had a worse prognostic outcome. Besides, GSEA shown IL1RAP was negative correlation of apopopsis, TLR4 and NF-κB signaling pathway. We also predicted that IL1RAP may related to IL-1 s, IL-33, and IL-36 s in STAD. The IL1RAP expression and mRNA level in tumor, or MGC803, cells were increased. Furthermore, IL1RAP knockdown by lentivirus could inhibit stomach carcinoma development in vitro and in vivo through weakening tumor cell proliferation, migration, invasion, therefore reducing tumor volume, weight, and biomarker levels, and increasing apoptotic level. Finally, we found IL1RAP knockdown could increase inflammation of tumor microenvironment-related inflammatory factors of stomach carcinoma, in vitro and in vivo. Our study demonstrates that IL1RAP is possibly able to regulate inflammation and apoptosis in stomach carcinoma. Furthermore, TLR4, NF-κB, IL-1 s, IL-33, and IL-36 s maybe the downstream target factor of IL1RAP in inflammation. These results may provide a new strategy for stomach carcinoma development by regulating inflammation.


2011 ◽  
Vol 55 (12) ◽  
pp. 5480-5484 ◽  
Author(s):  
Yuhan Chang ◽  
Wen-Chien Chen ◽  
Pang-Hsin Hsieh ◽  
Dave W. Chen ◽  
Mel S. Lee ◽  
...  

ABSTRACTThe objective of this study was to evaluate the antibacterial effects of polymethylmethacrylate (PMMA) bone cements loaded with daptomycin, vancomycin, and teicoplanin against methicillin-susceptibleStaphylococcus aureus(MSSA), methicillin-resistantStaphylococcus aureus(MRSA), and vancomycin-intermediateStaphylococcus aureus(VISA) strains. Standardized cement specimens made from 40 g PMMA loaded with 1 g (low-dose), 4 g (middle-dose) or 8 g (high-dose) antibiotics were tested for elution characteristics and antibacterial activities. The patterns of release of antibiotics from the cement specimens were evaluated usingin vitrobroth elution assay with high-performance liquid chromatography. The activities of broth elution fluid against differentStaphylococcus aureusstrains (MSSA, MRSA, and VISA) were then determined. The antibacterial activities of all the tested antibiotics were maintained after being mixed with PMMA. The cements loaded with higher dosages of antibiotics showed longer elution periods. Regardless of the antibiotic loading dose, the teicoplanin-loaded cements showed better elution efficacy and provided longer inhibitory periods against MSSA, MRSA, and VISA than cements loaded with the same dose of vancomycin or daptomycin. Regarding the choice of antibiotics for cement loading in the treatment ofStaphylococcus aureusinfection, teicoplanin was superior in terms of antibacterial effects.


2016 ◽  
Vol 65 (1) ◽  
Author(s):  
F. Frati ◽  
C. Incorvaia ◽  
F. Marcucci ◽  
L. Sensi ◽  
G. Di Cara ◽  
...  

Sublingual immunotherapy (SLIT) currently represents, as indicated by meta-analysis of its efficacy and safety, a valid option to the generally used traditional subcutaneous immunotherapy (SCIT) for treating respiratory allergy. Regarding efficacy, recent studies demonstrated that, similar to what has already been observed in SCIT as well as in experimental and clinical studies about the magnitudo of allergen exposure, the effectiveness on both clinical symptoms and immunologic changes depends on the amount of allergen administered during treatment. In addition, in vitro studies addressed with the role of dendritic cells, currently considered to be of pivotal importance in orienting toward tolerance the immune response to allergens, showed that the internalisation of allergen molecules, which is followed by tolerogenic presentation to T cells, depends on the amount of allergen. However, such dose dependence is not apparent concerning the safety. In fact, the comparison of studies respectively conducted with high and low allergen doses did not show differences in the rate of systemic reactions, which in any case never had the presentation of anaphylaxis, and instead a significant difference in the rate of local reactions, following the oral and gastrointestinal contact with the allergen extract, in favour of high dose studies.


2021 ◽  
Vol 9 (Suppl 3) ◽  
pp. A766-A766
Author(s):  
Isabelle Le Mercier ◽  
Sunny Sun ◽  
Dongmei Xiao ◽  
Laura Isacco ◽  
Daniel Treacy ◽  
...  

BackgroundT cell responses are tightly regulated and require a constant balance of signals during the different stages of their activation, expansion, and differentiation. As a result of chronic antigen exposure, T cells become exhausted in solid tumors, preventing them from controlling tumor growth.MethodsWe identified a transcriptional signature associated with T cell exhaustion in patients with melanoma and used our proprietary machine learning algorithms to predict molecules that would prevent T cell exhaustion and improve T cell function. Among the predictions, an orally available small molecule, Compound A, was highly predicted.ResultsCompound A was tested in an in vitro T cell Exhaustion assay and shown to prevent loss of proliferation and expression of immune checkpoint receptors. Transcriptionally, Compound A-treated cells looked indistinguishable from conventionally expanded, non-exhausted T cells. However, when assessed in a classical T cell activation assay, Compound A demonstrated dose dependent activity. At low dose, Compound A was immuno-stimulatory, allowing cells to divide further by preventing activation induced cell death. At higher doses, Compound A demonstrated immuno-suppressive activity preventing early CD69 upregulation and T cell proliferation. All together, these observations suggest that Compound A prevented exhaustion with a mechanism of action involving TCR signaling inhibition. While cessation of TCR signaling or rest has been recently associated with improved CAR-T efficacy by preventing or reversing exhaustion during the in vitro manufacturing phase, it is unclear if that mechanism would translate in vivo.Compound A was evaluated in the CT26 and MC38 syngeneic mouse models alongside anti-PD1. At low dose Compound A closely recapitulated anti-PD1 mediated cell behavior changes by scRNA-seq and flow cytometry in CT26 mice. At high dose, Compound A led to the accumulation of naive cells in the tumor microenvironment (TME) confirming the proposed mechanism of action. Low dose treatment was ineffective in MC38 mouse model but a pulsed treatment at high dose also recapitulated anti-PD1 activity in most animals. Importantly, we identified a new T cell population responding to anti-PD1 that was particularly increased in the MC38 mouse model; Compound A treatment also impacted this population.ConclusionsThese data confirm that mild TCR inhibition either suboptimal or fractionated can prevent exhaustion in vivo. However, this approach has a very limited window of activity between immuno-modulatory and immuno-suppressive effects, thereby limiting potential clinical benefit. Finally, these results demonstrate that our approach and platform was able to predict molecules that would prevent T cell exhaustion in vivo.


Sign in / Sign up

Export Citation Format

Share Document