Antimicrobial Resistance Patterns of E. coli Detected from Hospitalized Urine Culture Samples

2010 ◽  
Vol 3 (4) ◽  
pp. 195-201 ◽  
Author(s):  
Mohsen Mohammadi ◽  
Ehsan Ghasemi ◽  
Hamid Mokhayeri ◽  
Yadollah Pournia ◽  
Hadis Boroun
2019 ◽  
Vol 40 (7) ◽  
pp. 780-786 ◽  
Author(s):  
Meera Tandan ◽  
Philip D. Sloane ◽  
Kimberly Ward ◽  
David J. Weber ◽  
Akke Vellinga ◽  
...  

AbstractObjective:Identify changes in the prevalence and antimicrobial resistance patterns of potentially pathogenic bacteria in urine cultures during a 2-year antimicrobial stewardship intervention program in nursing homes (NHs).Design:Before-and-after intervention study.Setting:The study included 27 NHs in North Carolina.Methods:We audited all urine cultures ordered before and during an antimicrobial stewardship intervention. Analyses compared culture rates, culture positive rates, and pathogen antimicrobial resistance patterns.Results:Of 6,718 total urine cultures collected, 68% were positive for potentially pathogenic bacteria. During the intervention, significant reductions in the urine culture and positive culture rates were observed (P= .014). Most of the identified potentially uropathogenic isolates wereEscherichia coli(38%),Proteusspp (13%), andKlebsiella pneumoniae(12%). A significant decrease was observed during the intervention period in nitrofurantoin resistance amongE. coli(P≤ .001) and ciprofloxacin resistance amongProteusspp (P≤ .001); however carbapenem resistance increased forProteusspp (P≤ .001). Multidrug resistance also increased forProteusspp compared to the baseline. The high baseline resistance ofE. colito the commonly prescribed antimicrobials ciprofloxacin and trimethoprim-sulfamethoxazole (TMP/SMX) did not change during the intervention.Conclusions:The antimicrobial stewardship intervention program significantly reduced urine culture and culture-positive rates. Overall, very high proportions of antimicrobial resistance were observed among common pathogens; however, antimicrobial resistance trended downward but reductions were too small and scattered to conclude that the intervention significantly changed antimicrobial resistance. Longer intervention periods may be needed to effect change in resistance patterns.


2021 ◽  
Vol 11 (3) ◽  
pp. 650-658
Author(s):  
Mohammed Yahia Alasmary

Background: To explore the prevalence of urinary tract infections (UTIs) among female patients in the Najran region of Saudi Arabia and determine their antimicrobial resistance pattern. Methods: This study was conducted on 136 urine samples collected from outpatient departments (OPDs) of the different government hospitals in the Najran region of Saudi Arabia. Over one year, the results of susceptibility testing reports of outpatient midstream urine samples from three government hospitals were prospectively evaluated. Results: Of 136 urine samples, only 123 (90.45%) were found to show significant growth for UTIs, from which 23 different uropathogens were identified. Escherichia coli (58.5%) was the most commonly isolated organism, followed by Klebsiella pneumoniae (8.1%). The isolated microorganism showed increased resistance patterns from 3.3% to 62.6%, with an overall resistance of 27.19%. Meropenem was the most effective antimicrobial, followed by amikacin and ertapenem (0.47%, 0.91%, and 1.5% resistance, respectively). At the same time, ampicillin and cephazolin were the least (62.6% and 59.5% resistance, respectively) effective. Overall, eleven (8.94%) uropathogens isolates were ESBLs, among which there were eight (6.5%) Escherichia coli, one (0.81%) Klebsiella pneumoniae, one (0.81%) Klebsiella oxytoca, and one (0.81%) Citrobacter amalonaticus. Conclusions: E. coli remains the most commonly isolated causative uropathogens, followed by Klebsiella species. The prevalence of pathogenic E. coli and Klebsiella species underscores the importance of developing cost-effective, precise, and rapid identification systems to minimize public exposure to uropathogens. Antibiotic susceptibility data revealed that most of the isolates were resistant to the majority of the antibiotics. The patients with UTIs in the Najran region of Saudi Arabia are at a high risk of antibiotic resistance, leading to significant problems in outpatient department (OPD) treatment outcomes and raising the alarm for the physician to change their empiric treatment.


2018 ◽  
Author(s):  
Christian Vinueza-Burgos ◽  
David Ortega-Paredes ◽  
Cristian Narváez ◽  
Lieven De Zutter ◽  
Jeannete Zurita

AbstractAntimicrobial resistance (AR) is a worldwide concern. Up to a 160% increase in antibiotic usage in food animals is expected in Latin American countries. The poultry industry is an increasingly important segment of food production and contributor to AR. The objective of this study was to evaluate the prevalence, AR patterns and the characterization of relevant resistance genes in Extended Spectrum β-lactamases (ESBL) and AmpC E. coli from large poultry farms in Ecuador. Sampling was performed from June 2013 to July 2014 in 6 slaughterhouses that slaughter broilers from 115 farms totaling 384 flocks. Each sample of collected caeca was streaked onto TBX agar supplemented with cefotaxime (3 mg/l). In total, 176 isolates were analyzed for antimicrobial resistance patterns by the disk diffusion method and for blaCTX-M, blaTEM, blaCMY, blaSHV, blaKPC, and mcr-1 by PCR and sequencing. ESBL and AmpC E. coli were found in 362 flocks (94.3%) from 112 farms (97.4%). We found that 98.3% of the isolates were multi-resistant to antibiotics. Low resistance was observed for ertapenem and nitrofurantoin. The most prevalent ESBL genes were the blaCTX-M (90.9%) blaCTX-M-65, blaCTX-M-55 and blaCTX-M-3 alleles. Most of the AmpC strains presented the blaCMY-2 gene. Three isolates showed the mcr-1 gene. Poultry production systems represent a hotspot for antimicrobial resistance in Ecuador, possibly mediated by the extensive use of antibiotics. Monitoring this sector in national and regional plans of antimicrobial resistance surveillance should therefore be considered.


2011 ◽  
Vol 74 (8) ◽  
pp. 1245-1251 ◽  
Author(s):  
ANGELA COOK ◽  
RICHARD J. REID-SMITH ◽  
REBECCA J. IRWIN ◽  
SCOTT A. McEWEN ◽  
VIRGINIA YOUNG ◽  
...  

This study estimated the prevalence of Salmonella, Campylobacter, and Escherichia coli isolates in fresh retail grain-fed veal obtained in Ontario, Canada. The prevalence and antimicrobial resistance patterns were examined for points of public health significance. Veal samples (n = 528) were collected from February 2003 through May 2004. Twenty-one Salmonella isolates were recovered from 18 (4%) of 438 samples and underwent antimicrobial susceptibility testing. Resistance to one or more antimicrobials was found in 6 (29%) of 21 Salmonella isolates; 5 (24%) of 21 isolates were resistant to five or more antimicrobials. No resistance to antimicrobials of very high human health importance was observed. Ampicillin-chloramphenicol-streptomycin-sulfamethoxazole-tetracycline resistance was found in 5 (3%) of 21 Salmonella isolates. Campylobacter isolates were recovered from 5 (1%) of 438 samples; 6 isolates underwent antimicrobial susceptibility testing. Resistance to one or more antimicrobials was documented in 3 (50%) of 6 Campylobacter isolates. No Campylobacter isolates were resistant to five or more antimicrobials or category I antimicrobials. E. coli isolates were recovered from 387 (88%) of 438 samples; 1,258 isolates underwent antimicrobial susceptibility testing. Resistance to one or more antimicrobials was found in 678 (54%) of 1,258 E. coli isolates; 128 (10%) of 1,258 were resistant to five or more antimicrobials. Five (0.4%) and 7 (0.6%) of 1,258 E. coli isolates were resistant to ceftiofur and ceftriaxone, respectively, while 34 (3%) of 1,258 were resistant to nalidixic acid. Ciprofloxacin resistance was not detected. There were 101 different resistance patterns observed among E. coli isolates; resistance to tetracycline alone (12.7%, 161 of 1,258) was most frequently observed. This study provides baseline prevalence and antimicrobial resistance data and highlights potential public health concerns.


2018 ◽  
Vol 16 (2) ◽  
pp. 178-183
Author(s):  
Dhiraj Shrestha ◽  
Pratigya Thapa ◽  
Dinesh Bhandari ◽  
Hiramani Parajuli ◽  
Prakash Chaudhary ◽  
...  

Background: The study was designed to provide account of etiological agents of urinary tract infection in pediatric patients and the antimicrobial resistance pattern plus biofilm producing profile of the isolates.Methods: The prospective study was conducted in Alka Hospital, Nepal with 353 clean catch urine samples from children. It was obtained during July 2014 to January 2015 which were first cultured by semi-quantitative method, followed by antimicrobial susceptibility testing and biofilm production assay on Congo red agar. Multidrug- resistance, extensively drug- resistance and pandrug- resistance among isolates were considered as per international consensus.Results: Out of 353 samples, 64 (18.13%) showed positive growth in culture, confirming urinary tract infection. E. coli, 44 (68.8%) was the predominant organism followed by Klebsiella spp. 6 (14.1%). Most E. coli were sensitive to amikacin (93.2%) followed by nitrofurantoin (86.4%), and highly resistant to ampicillin (95.5%). Of 64 isolates, 23 (35.93%) were found to be multidrug- resistant strains. Biofilm was produced by 36 (56.25%) isolates.Conclusions: This study showed higher biofilm production and resistance to in-use antibiotics rendering ineffective for empirical use. Regular surveillance of resistance patterns should be done to regulate multidrug- resistant bugs and to ensure effective management of urinary tract infection in children in a tertiary care setups.Keywords: AMR; antimicrobial resistance; biofilm; urinary tract infection; UTI.


2018 ◽  
Vol 46 (1) ◽  
pp. 8 ◽  
Author(s):  
Aniroot Nuangmek ◽  
Suvichai Rojanasthien ◽  
Suwit Chotinun ◽  
Panuwat Yamsakul ◽  
Pakpoom Tadee ◽  
...  

Background: Study of drug resistance of commensal bacteria in both humans and animals can determine the scale of the drug resistance problem. Usage of antimicrobials to treat infections in humans and animals has generated extensive antimicrobial pressure not only on targeted pathogens but also on commensal bacteria. Commensal Escherichia coli appears to be the major reservoir for resistant genes implicated in the transmission of genetic traits from one bacterium to another. Antimicrobial resistance in Enterobacteriaceae has increased dramatically worldwide in the last decade. An increasing number of community-onset extended-spectrum beta-lactamase (ESBL)-producing bacterial infections, especially those caused by ESBL-producing E. coli, have been reported in many countries, including Thailand. Moreover, ESBL-producing E. coli have been widely detected in food-producing animals and the environment. The increased use of ESBLs in food animals is a serious public health problem. The objective of the study was to determine the prevalence and antimicrobial resistance pattern of ESBL-producing E. coli isolated from pigs, layers, farm workers and stagnant water, in order to increase awareness about antimicrobial usage on farms and to minimize the expansion of the antimicrobial resistance phenomenon in farm settings.Materials, Methods & Results: A total of 588 samples were collected from 107 pig farms and 89 layer farms in Chiang Mai–Lamphun and Chon Buri provinces during May 2015-April 2016. Double-disk diffusion method according to EUCAST (European Committee on Antimicrobial Susceptibility Testing) guidelines was used for detection. The results demonstrated that 36.7% (216/588) of samples were ESBL-producing E. coli-positive, including rectal swabs 74.8% (80/107), pig farm worker stool swabs 57.0% (61/107), stagnant water on pig farms 21.5% (23/107), healthy layer rectal swabs 6.7% (6/89) and layer farm worker stool swabs 51.7% (46/89). Most of the isolates were resistant against ampicillin (99.5%), followed by erythromycin (98.6%) and ceftriaxone (96.3%). All of them were classified as multidrug-resistant strains. Moreover, AMP-CRO-E-TE-C-SXT-CN was the most frequent phenotype pattern detected in animals, humans and the environment, followed by AMP-CRO-E-TE-C-SXT-NA-CN.Discussion: The present study offers clear evidence that the prevalence of ESBL-producing E. coli in healthy pigs is higher than in layers. One possible explanation is that a large amount and variety of antimicrobials are used on pig farms, resulting in a common and significant source of drug-resistant ESBL-producing E. coli. The lower incidence of ESBL-producing E. coli in samples from a pig farm environment than in samples of animal origin indicate that pigs are a reservoir of a reservoir for resistant bacteria and a source of environmental contamination. Antimicrobial resistance patterns of ESBLproducing E. coli detected in all sample types and study locations were quite similar. In almost all ESBL-producing E. coli isolates, resistance was shown against ampicillin, erythromycin, ceftriaxone, tetracycline and chloramphenicol. Moreover, multidrug resistance was found in all isolates of ESBL-producing E. coli. The differences in antimicrobial agent resistance patterns can be used to differentiate sources by employing analytical tools such as discriminant function analysis. A molecular typing protocol is recommended for use in a discriminant function analysis for pattern determination of pathogen spreading. However, genetic fingerprinting techniques for microbial source tracking are more expensive, and facilities with appropriate equipment and expertise are required.


2021 ◽  
Vol 30 (1) ◽  
pp. 101-106
Author(s):  
K. F. Chah ◽  
S. C. Okafor ◽  
S. I. Oboegbulem

This study was carried out to determine resistance profiles of Escherichia coli strains isolated from clinically healthy chickens in Nsukka, southeast Nigeria. A total of 324 E. coli strains isolated from cloaca swabs from 390 chickens were tested against 16 antimicrobial agents using the disc diffusion method. The antibiotics used in the study were: ampicillin (25µg), amoxycillin-clavulanic acid (30µg), gentamicin (10µg), Streptomycin (30µg). cefuroxime (20µg), cephalexin (10µg), nalidixic acid (30µg), ciprofloxacin (5µg), norfloxacin (10µg), ofloxacin (5µg), pefloxacin (5µg), tetracycline (30µg), chloramphenicol (10µg), cotrimoxazole (50µg), colistin (25µg) and nitrofurantoin (100µg).The strains demonstrated high rates of resistance (34.6%  66.1%) to ampicillin, tetracycline, nitrofurantoin, cefuroxime and cotrimoxazole. None of the isolates was resistant to colistin, ofloxacin and pefloxacin. For each antimicrobial agent (except cephalexin), strains from the intensively reared chickens (layers and broilers) displayed higher resistance frequencies than those from the local birds. A total of 49 resistant patterns were recorded for the 228 strains resistant to at least one antimicrobial drug, with AmTeCoS and AmTeCfN being the predominant patterns. Because of the great variation in the drug resistance patterns of the Escherichia coli strains, use of antimicrobial agents in the management of E. coli infections in the study area should be based on results of sensitivity tests.


2020 ◽  
Author(s):  
Vijayalaxmi V Mogasale ◽  
Prakash Saldanha ◽  
Vidya Pai ◽  
Rekha PD ◽  
Vittal Mogasale

Abstract Background There is global consensus that Antimicrobial Resistance (AMR) poses an unprecedented challenge to modern medicine as we know it today; and the lack of new antibiotics in the pipeline is compounding the threat to contain emerging drug-resistant infections. In 2017, the World Health Organization (WHO) has articulated a priority pathogens list (PPL) to provide strategic direction to research and development of new anti-microbials. Anti-microbial resistance patterns of selected ‘drug-bug’ combinations based on the WHO-PPL in one tertiary health care facility in India are explored in this paper. Methods Culture reports of laboratory specimens, collected between 1st January 2014 and 31st October 2019 from paediatric patients in a tertiary care hospital in India, were retrospectively extracted. The antimicrobial susceptibility patterns for selected antimicrobials based on the WHO-PPL are analysed and reported. Results Of 12,256 culture specimens screened, 2,335 (19%) showed culture positivity; of which 1,556 were organisms from the WHO-PPL. E. coli was the most common organism isolated (37%) followed by Staphylococcus aureus (16%). Total 72% of E. coli were extended-spectrum beta-lactamases producers, 55% of Enterobacteriaceae were resistant to 3rd generation cephalosporins, and 53% of Staphylococcus aureus were Methicillin resistant. Time-trend analysis of the data showed continued high resistance to carbapenem in E coli, Klebsiella pneumoniae and Enterobacter cloacae. Conclusions The AMR trends and prevalence patterns are likely to be different, across various local settings, than as defined at the national level or the WHO-PPL. This difference needs to be recognised in decision and policy making. It is critical, that the evidence used at national and global levels, have reasonable geographical and population representation through standardised and more granular AMR surveillance, in order to improve the effectiveness of the overall national AMR response.


2011 ◽  
Vol 60 (2) ◽  
pp. 216-222 ◽  
Author(s):  
Erick Amaya ◽  
Daniel Reyes ◽  
Samuel Vilchez ◽  
Margarita Paniagua ◽  
Roland Möllby ◽  
...  

In developing countries, diarrhoeal diseases are one of the major causes of death in children under 5 years of age. It is known that diarrhoeagenic Escherichia coli (DEC) is an important aetiological agent of infantile diarrhoea in Nicaragua. However, there are no recent studies on antimicrobial resistance among intestinal E. coli isolates in Nicaraguan children. The aim of the present study was to determine the antimicrobial resistance pattern in a collection of 727 intestinal E. coli isolates from the faeces of children in León, Nicaragua, between March 2005 and September 2006. All samples had been screened previously for the presence of DEC by multiplex PCR. Three hundred and ninety-five non-DEC isolates (270 from children with diarrhoea and 125 from children without diarrhoea) and 332 DEC isolates (241 from children with diarrhoea and 91 from children without diarrhoea) were analysed in this study. In general, antimicrobial resistance among the 727 intestinal E. coli isolates was high for ampicillin (60 %), trimethoprim–sulfamethoxazole (64 %) and chloramphenicol (11 %). Among individual E. coli categories, enteroaggregative E. coli isolates from children with and without diarrhoea exhibited significantly higher levels of resistance (P<0.05) to ampicillin and trimethoprim–sulfamethoxazole compared to the other E. coli categories. Resistance to ceftazidime and/or ceftriaxone and a pattern of multi-resistance was related to CTX-M-5- or CTX-M-15-producing E. coli isolates. The results suggest that E. coli isolates from Nicaraguan children have not reached the high levels of resistance to the most common antibiotics used for diarrhoea treatment as in other countries.


Sign in / Sign up

Export Citation Format

Share Document