scholarly journals Antimicrobial resistance of non-clinical Escherichia coli strains from chicken in Nsukka, South-east Nigeria.

2021 ◽  
Vol 30 (1) ◽  
pp. 101-106
Author(s):  
K. F. Chah ◽  
S. C. Okafor ◽  
S. I. Oboegbulem

This study was carried out to determine resistance profiles of Escherichia coli strains isolated from clinically healthy chickens in Nsukka, southeast Nigeria. A total of 324 E. coli strains isolated from cloaca swabs from 390 chickens were tested against 16 antimicrobial agents using the disc diffusion method. The antibiotics used in the study were: ampicillin (25µg), amoxycillin-clavulanic acid (30µg), gentamicin (10µg), Streptomycin (30µg). cefuroxime (20µg), cephalexin (10µg), nalidixic acid (30µg), ciprofloxacin (5µg), norfloxacin (10µg), ofloxacin (5µg), pefloxacin (5µg), tetracycline (30µg), chloramphenicol (10µg), cotrimoxazole (50µg), colistin (25µg) and nitrofurantoin (100µg).The strains demonstrated high rates of resistance (34.6%  66.1%) to ampicillin, tetracycline, nitrofurantoin, cefuroxime and cotrimoxazole. None of the isolates was resistant to colistin, ofloxacin and pefloxacin. For each antimicrobial agent (except cephalexin), strains from the intensively reared chickens (layers and broilers) displayed higher resistance frequencies than those from the local birds. A total of 49 resistant patterns were recorded for the 228 strains resistant to at least one antimicrobial drug, with AmTeCoS and AmTeCfN being the predominant patterns. Because of the great variation in the drug resistance patterns of the Escherichia coli strains, use of antimicrobial agents in the management of E. coli infections in the study area should be based on results of sensitivity tests.

Pathogens ◽  
2019 ◽  
Vol 8 (3) ◽  
pp. 118 ◽  
Author(s):  
Muha. Ajijur Rahman Al Azad ◽  
Md. Masudur Rahman ◽  
Ruhul Amin ◽  
Mst. Ismat Ara Begum ◽  
Reinhard Fries ◽  
...  

Antimicrobial resistance is a major health problem, particularly in developing countries like Bangladesh, where there is a paucity of information on resistance patterns and prevalence of antimicrobial determinants. Therefore, the aims of this study were to investigate the prevalence of resistance, including multi-drug resistance (MDR), and the associated genetic determinants in Escherichia coli isolates from cloacal swabs of live broiler chickens in Bangladesh. Altogether, 400 cloacal swabs (200 from Rajshahi and 200 from Dhaka divisions) were randomly collected from individual chickens in 50 broiler farms. E. coli was isolated and identified using conventional bacteriological culture and biochemical methods. The isolates were further confirmed using genus-specific 16S rRNAtargeted polymerase chain reaction (PCR) primers. Antimicrobial susceptibilities and MDR of the isolates against nine different antimicrobial agents (ampicillin, erythromycin, tetracycline, gentamicin, ciprofloxacin, levofloxacin, trimethoprim-sulfamethoxazole, colistin sulphate, and streptomycin) were determined using the Kirby-Bauer disc diffusion method. Resistance determinants of E. coli to ampicillin (blaTEM), streptomycin (aadA1), erythromycin [ere(A)], trimethoprim (dfrA1), and tetracycline [tet(A), tet(B)] were screened using PCR. Our results showed that all swab samples were positive for E. coli. The isolates were uniformly resistant to ampicillin, tetracycline, streptomycin, ciprofloxacin, erythromycin, and trimethoprim-sulphamethoxazole. The isolates exhibited highest susceptibility to colistin sulphate (73.5%), followed by gentamicin (49%), and levofloxacin (17%). All isolates were resistant to three classes of antibiotics, 204 isolates (51%) were resistant to four classes, and 56 isolates (14%) were resistant to five. The highest prevalence of antimicrobial resistance gene was recorded for tetracycline (tet(A):95.25%; tet(B):95.25%) followed by ampicillin (blaTEM:91.25%), streptomycin (aadA1:88.25%), erythromycin (ere(A):84.75%), and trimethoprim (dfrA1:65.5%). In conclusion, surveillance for MDR bacteria in poultry is a critical piece of knowledge, which would be useful for optimizing empiric antimicrobial treatments and exploring alternative antimicrobial agents.


2020 ◽  
Vol 28 (2) ◽  
pp. 81
Author(s):  
Raouia Ben Rhouma ◽  
Ahlem Jouini ◽  
Amira Klibi ◽  
Safa Hamrouni ◽  
Aziza Boubaker ◽  
...  

The purpose of this study was to identify <em>Escherichia coli</em> isolates in diarrhoeic and healthy rabbits in Tunisia and characterise their virulence and antibiotic resistance genes. In the 2014-2015 period, 60 faecal samples from diarrhoeic and healthy rabbits were collected from different breeding farms in Tunisia. Susceptibility to 14 antimicrobial agents was tested by disc diffusion method and the mechanisms of gene resistance were evaluated using polymerase chain reaction and sequencing methods. Forty <em>E. coli</em> isolates were recovered in selective media. High frequency of resistance to tetracycline (95%) was detected, followed by different levels of resistance to sulphonamide (72.5%), streptomycin (62.5%), trimethoprim-sulfamethoxazole (60%), nalidixic acid (32.5%), ampicillin (37.5%) and ticarcillin (35%). <em>E. coli</em> strains were susceptible to cefotaxime, ceftazidime and imipenem. Different variants of bla<sub>TEM</sub>, <em>tet</em>, <em>sul</em> genes were detected in most of the strains resistant to ampicillin, tetracycline and sulphonamide, respectively. The presence of class 1 integron was studied in 29 sulphonamide-resistant <em>E. coli</em> strains from which 15 harboured class 1 integron with four different arrangements of gene cassettes, <em>dfrA17</em>+<em>aadA5</em> (n=9), <em>dfrA1</em> + <em>aadA1</em> (n=4), <em>dfrA12</em> + <em>addA2</em> (n=1), <em>dfrA12</em>+<em>orf</em>+<em>addA2</em> (n=1). The <em>qnrB</em> gene was detected in six strains out of 13 quinolone-resistant <em>E. coli</em> strains. Seventeen <em>E. coli</em> isolates from diarrhoeic rabbits harboured the enteropathogenic eae genes associated with different virulence genes tested (<em>fimA</em>, <em>cnf1</em>, <em>aer</em>), and affiliated to B2 (n=8) and D (n=9) phylogroups. Isolated <em>E. coli</em> strains from healthy rabbit were harbouring <em>fim A</em> and/or <em>cnf1</em> genes and affiliated to A and B1 phylogroups. This study showed that <em>E. coli</em> strains from the intestinal tract of rabbits are resistant to the widely prescribed antibiotics in medicine. Therefore, they constitute a reservoir of antimicrobial-resistant genes, which may play a significant role in the spread of antimicrobial resistance. In addition, the eae virulence gene seemed to be implicated in diarrhoea in breeder rabbits in Tunisia.


2019 ◽  
Vol 11 (01) ◽  
pp. 068-074 ◽  
Author(s):  
Sheetal Verma ◽  
Vimala Venkatesh ◽  
Rashmi Kumar ◽  
Saurabh Kashyap ◽  
Manoj Kumar ◽  
...  

Abstract INTRODUCTION: Infectious diarrhea is leading infectious cause of childhood morbidity, hospitalizations, and mortality particularly in children living in developing countries like India. The etiological agents differ depending on geographical area, and recent data suggest increase in drug resistance to various enteropathogens. AIMS AND OBJECTIVES: The aim of the study was to investigate emerging diarrheal agents and antimicrobial resistance profile of bacterial pathogens from children (<12 years of age) hospitalized with acute diarrhea. MATERIALS AND METHODS: A cross-sectional, hospital-based observational study was conducted over 1 year in which 100 children <12 years who were hospitalized due to diarrhea were recruited. Diarrhea was defined as the passage of three or more liquid stools in a 24-h period using the World Health Organization guidelines. Samples were processed for detection of various bacterial, viral, and parasitic agents by standard microbiological, serological, and molecular tests. Antimicrobial resistance testing was performed with the Kirby–Bauer disk diffusion method. ELISA was performed for Rotavirus and Escherichia coli O157. Multiplex polymerase chain reaction test was performed to detect diarrheagenic E. coli (DEC). RESULTS: Pathogenic diarrheal agents were found in 63% patients. Rotavirus was identified in 52.5%, DEC in 29%, Vibrio cholerae in 4%, Shigella flexneri in 3%, Aeromonas sp. in 1%, Giardia lamblia in 4%, and Entamoeba histolytica in 1% cases. Enteropathogenic E. coli (EPEC) in 19 (65.5%) cases was the most common agent followed by Enteroaggregative E. coli (EAEC) in 5 (17.2%), Enterotoxigenic E. coli (ETEC) in 2 (6%), and Enteroinvasive E. coli (EIEC) in 3 (10.3%) cases. Resistance rates of DEC to first-line therapeutic drugs were high, 97.3% to ampicillin and 95.95% to co-trimoxazole. DEC was susceptible to chloramphenicol in 58.11%, gentamicin in 48.19%, and amikacin in 58.11% cases. Shigella sp. and V. cholerae isolates were 100% sensitive to gentamicin and ofloxacin. CONCLUSION: EPEC is the most common DEC pathotype and EAEC, ETEC, and EIEC are also emerging as dominant diarrheal agents. Rotavirus was the most common causative agents of diarrhea especially in children <5 years. Most of the bacterial isolates showed high level of drug resistance to first-line empirical drugs and were multidrug resistant making them unsuitable for empiric treatment. Laboratory monitoring of drug susceptibility of stool isolates appears necessary to formulate antibiotic policy for treating diarrheal illness at the local level. There is an urgent need to strengthen diarrheal surveillance to monitor susceptibility to commonly prescribed antibiotics.


2011 ◽  
Vol 2011 ◽  
pp. 1-7 ◽  
Author(s):  
Comfort Nkogwe ◽  
Juliah Raletobana ◽  
Alva Stewart-Johnson ◽  
Sharianne Suepaul ◽  
Abiodun Adesiyun

The study was conducted to determine the frequency of isolation ofSalmonella,CampylobacterandE. coliO157 in the faecal samples of rats trapped across the regional corporations in Trinidad and to assess their resistance to antimicrobial agents. A total of 204 rats were trapped for the detection of selected bacteria. Standard methods were used to isolateSalmonella,CampylobacterandE. coliO157. Characterization ofE. coliwas done on sorbitol MacConkey agar to determine non-sorbitol fermentation, blood agar to determine haemolytic and mucoid colonies and by usingE. coliO157 antiserum to determine O157 strain. The disc diffusion method was used to determine resistance to nine antimicrobial agents. Of the 204 rats, 4 (2.0%), 7 (3.4%) and 171 (83.8%) were positive forSalmonellaspp.,Campylobacterspp. andE. coli, respectively. Of the 171 isolates ofE. colitested 0 (0.0%), 25 (14.6%) and 19 (11.1%) were haemolytic, mucoid and non-sorbitol fermenters, respectively. All isolates were negative for the O157 strain. The frequency of resistance to the 9 antimicrobial agents tested was 75% (3 of 4) forSalmonella, 85.7% (6 of 7) ofCampylobacterspp. and 36.3% (62 of 171) forE. coli(;χ2).


2017 ◽  
Vol 2017 ◽  
pp. 1-7 ◽  
Author(s):  
Norsyafikah Asyilla Nordin ◽  
Tchan Wei Chai ◽  
Bee Ling Tan ◽  
Ching Liang Choi ◽  
Ainaa Nadiah Abd Halim ◽  
...  

A new series of aspirin bearing alkylated amines moieties 1–12 were synthesised by reacting isothiocyanate with a series of aniline derivatives in overall yield of 16–56%. The proposed structures of all the synthesised compounds were confirmed using elemental analysis, FTIR, and 1H and  13C NMR spectroscopy. All compounds were evaluated for antibacterial activities against E. coli and S. aureus via turbidimetric kinetic and Kirby Bauer disc diffusion method. Compound 5 bearing meta -CH3 substituent showed the highest relative inhibition zone diameter against tested bacteria compared to ortho and para substituent. Furthermore, aspirin derivatives bearing shorter chains exhibited better bacterial inhibition than longer alkyl chains.


2006 ◽  
Vol 73 (5) ◽  
pp. 1404-1414 ◽  
Author(s):  
J. L. Smith ◽  
D. J. V. Drum ◽  
Y. Dai ◽  
J. M. Kim ◽  
S. Sanchez ◽  
...  

ABSTRACT Escherichia coli strains isolated from commercial broilers and an experimental flock of chickens were screened to determine phenotypic expression of antimicrobial resistance and carriage of drug resistance determinants. The goal of this study was to investigate the influence of oxytetracycline, sarafloxacin, and enrofloxacin administration on the distribution of resistance determinants and strain types among intestinal commensal E. coli strains isolated from broiler chickens. We detected a high prevalence of resistance to drugs such as tetracycline (36 to 97%), sulfonamides (50 to 100%), and streptomycin (53 to 100%) in E. coli isolates from treated and untreated flocks. These isolates also had a high prevalence of class 1 integron carriage, and most of them possessed the streptomycin resistance cassette, aadA1. In order to investigate the contribution of E. coli strain distribution to the prevalence of antimicrobial resistance and the resistance determinants, isolates from each flock were DNA fingerprinted by enterobacterial repetitive intergenic consensus sequence (ERIC) PCR. Although very diverse E. coli strain types were detected, four ERIC strain types were present on all of the commercial broiler farms, and two of the strains were also found in the experimental flocks. Each E. coli strain consisted of both susceptible and antimicrobial agent-resistant isolates. In some instances, isolates of the same E. coli strain expressed the same drug resistance patterns although they harbored different tet determinants or streptomycin resistance genes. Therefore, drug resistance patterns could not be explained solely by strain prevalence, indicating that mobile elements contributed significantly to the prevalence of resistance.


2021 ◽  
Vol 6 (2) ◽  
pp. 97-100
Author(s):  
Ai Yin Loh ◽  
Khomaizon A.K. Pahirulzaman

Here we present the efficacies of Murraya koenigii leaves extract as natural antibacterial agents bythe ability to inhibit the growth of Escherichia coli and Staphylococcus aureus. The antibacterialactivities of formulated liquid hand soap with different concentrations (10, 30 and 50 mg/mL) ofM. koenigii extracts were determined by paper disc diffusion method. M. koenigii leaves extract at10 mg/mL concentration had the ability to inhibit the growth of both test microorganisms. Whereas,for liquid hand soap formulated with 10, 30 and 50 mg/mL M. koenigii extracts, inhibition zoneswere observed on S. aureus assay plates but not on E. coli. Hence, the results suggested that liquidhand soap containing M. koenigii extract had therapeutic potentials to prevent spread of skindiseases caused by S. aureus.


Author(s):  
Israel Mensah- Attipoe ◽  
Japheth A. Opintan ◽  
Mercy J. Newman ◽  
Prince Pappoe- Ashong

Aim: This study aimed to characterize ciprofloxacin-resistance genes in clinical Escherichia coli isolates obtained from a six-month antimicrobial resistance (AMR) surveillance from Ghana. Methods: Eighty-three of 440 archived E. coli isolates were confirmed by biochemical reactions and resistance profiles by the disc diffusion method. These isolates were cultured from urine (42), stool (23), vaginal swabs (12), wounds (5) and heart valve (1) during AMR surveillance. Minimum Inhibition Concentration (MIC) by E-test method was performed on all E. coli isolates that were resistant to ciprofloxacin by the disc diffusion method. Additionally, all isolates with reduced MIC to ciprofloxacin (>32 µg/ml) were selected for molecular assays.  Three chromosomal and nine plasmid-mediated resistance genes were screened in all Ciprofloxacin resistant E. coli (CRE) by polymerase chain reaction (PCR). Randomly selected amplified genes were commercially sequenced and analyzed. Results: In total, 47/83 (56.6%) E. coli isolates were resistant to ciprofloxacin and 29 (61.7%) had MIC values greater than 32 µg/ml. Chromosomal mediated genes (gyrA, gyrB and parC) were present in all 29 CRE isolates (100%). Distribution of the plasmid-mediated genes were as follows; qnrA 16/29 (55.1%), qnrB 16/29(55.1%), qnrC 22/29(75.8%), qnrS 26/29(89.6%), qepA 5/29(17.2%) and oqxB 19/29(65.5%). Genes encoding for altered aminoglycoside acetyltransferase [aac(6’)1bcr] were also present in all 29 CRE isolates. The majority (72.4%) of the CRE isolates had gyrA mutations at codons 83 and 87. In parC, the mutations were at codons 71 and 80. Five isolates had mutations at codon 56 and four each had mutations at positions 79 and 80. Conclusion: In this study, fluoroquinolone resistance genes were identified in all CRE isolates, mostly with putative mutations in the Quinolone Resistance Determining Region (QRDR). These chromosomal and plasmid-mediated genes may be widespread in Ghana and associated with CRE from the AMR surveillance. Although new mutations points were identified in parC, they may not be linked to the CRE.


2020 ◽  
Vol 56 (2) ◽  
pp. 86
Author(s):  
Muhammad Amin ◽  
Eddy Bagus Wasito ◽  
Erwin Astha Triyono

This study aimed to compare ciprofloxacin and cefotaxime exposure to develop ESBL producing Escherichia coli (E. coli). A total of 16 isolates of cefotaxime sensitive E. coli and ciprofloxacin were exposed to ciprofloxacin and cefotaxime for 14 days using the Kirby-Bauer antibiotic disc diffusion method. Colonies that grew on the edge of the inhibiting zone were exposed each day by the same method. Furthermore, we observed the occurrence of resistance to cefotaxime as ESBL screening test. Isolates were resistant, the following day the ESBL was confirmed by the Modified Double Disk Sinergy Test (MDDST) method using Cefotaxime (CTX), Ceftazidime (CAZ), Aztreonam (ATM), and Amoxilin Clavulanate (AMC) antibiotic discs. From 16 isolates of ESBL producing E. coli exposed to ciprofloxacin, it was obtained 4 (25%) to ESBL E. coli. ESBL production occurred after E. coli was exposed to ciprofloxacin on days 5, 6, 7, and 12. While those exposed to cefotaxime none becomes ESBL E. coli. There was no difference between ciprofloxacin and cefotaxime exposure to develop ESBL producing E. coli (p=0.101; Chi-square).


2021 ◽  
Vol 14 (8) ◽  
Author(s):  
Eman Jassim Mohammed ◽  
Mohammed Allami ◽  
Mohammadreza Sharifmoghaddam ◽  
Masoumeh Bahreini

Background: The O-antigen is one of the uropathogenic Escherichia coli (UPEC) virulence factors used as a biomarker to classify E. coli strains. Objectives: In this study, the relationship between antibiotic resistance patterns and O-serogroups was investigated in UPEC strains isolated from patients with urinary tract infections (UTIs) in southern Iraq. Methods: Methods: A total of 100 UPEC isolates from the urine specimens of patients with UTIs within the age range of 4 months to 78 years in various southern Iraqi hospitals were collected (May 2017 to January 2018) and confirmed using biochemical tests (e.g., Analytical Profile Index 20E). Antibiotic susceptibility tests were performed using the disk diffusion method according to the Clinical and Laboratory Standards Institute guidelines. The multiple polymerase chain reaction technique was applied to investigate the prevalence of O-serogroups. Results: Results: The most frequent serogroups in the E. coli isolates were O8 (27.7%) and O25 (24.4%); however, serogroup O83 was not observed in the samples. Serogroups O75, O6, O16, and O18 had the lowest frequency (1.1%) among the examined isolates. Furthermore, 10% of the isolates did not belong to any of the examined serogroups. The phenotypic tests showed that the highest and the lowest resistance belonged to piperacillin (92%) and imipenem (5%), respectively. Serogroups O4 and O21 showed the highest drug resistance; nevertheless, serogroups O75, O18, and O1 showed the lowest drug resistance. Additionally, 94% of the isolates were resistant to three or more classes of antibiotics. Conclusions: Conclusion: According to the results, UPEC isolates showed high resistance to common antibiotics; however, they were sensitive to imipenem and amikacin. Serogroups O8 and O25 were the most common among UPEC isolates. Moreover, O4 and O21 showed the highest drug resistance. There was a direct relationship between antimicrobial resistance and O-serogroups in UPEC isolates.


Sign in / Sign up

Export Citation Format

Share Document