scholarly journals Lentil By-products as a Source of Protein for Food Packaging Applications

2019 ◽  
Vol 15 (1) ◽  
pp. 1-10
Author(s):  
E. Diaz de Apodaca ◽  
A. Montanari ◽  
L. Fernandez-de Castro ◽  
E. Umilta ◽  
L. Arroyo ◽  
...  
Keyword(s):  
2021 ◽  
Vol 13 (12) ◽  
pp. 6921
Author(s):  
Laura Sisti ◽  
Annamaria Celli ◽  
Grazia Totaro ◽  
Patrizia Cinelli ◽  
Francesca Signori ◽  
...  

In recent years, the circular economy and sustainability have gained attention in the food industry aimed at recycling food industrial waste and residues. For example, several plant-based materials are nowadays used in packaging and biofuel production. Among them, by-products and waste from coffee processing constitute a largely available, low cost, good quality resource. Coffee production includes many steps, in which by-products are generated including coffee pulp, coffee husks, silver skin and spent coffee. This review aims to analyze the reasons why coffee waste can be considered as a valuable source in recycling strategies for the sustainable production of bio-based chemicals, materials and fuels. It addresses the most recent advances in monomer, polymer and plastic filler productions and applications based on the development of viable biorefinery technologies. The exploration of strategies to unlock the potential of this biomass for fuel productions is also revised. Coffee by-products valorization is a clear example of waste biorefinery. Future applications in areas such as biomedicine, food packaging and material technology should be taken into consideration. However, further efforts in techno-economic analysis and the assessment of the feasibility of valorization processes on an industrial scale are needed.


Polymers ◽  
2019 ◽  
Vol 12 (1) ◽  
pp. 28 ◽  
Author(s):  
Silvestru Bogdănel Munteanu ◽  
Cornelia Vasile

Plants are the most abundant bioresources, providing valuable materials that can be used as additives in polymeric materials, such as lignocellulosic fibers, nano-cellulose, or lignin, as well as plant extracts containing bioactive phenolic and flavonoid compounds used in the healthcare, pharmaceutical, cosmetic, and nutraceutical industries. The incorporation of additives into polymeric materials improves their properties to make them suitable for multiple applications. Efforts are made to incorporate into the raw polymers various natural biobased and biodegradable additives with a low environmental fingerprint, such as by-products, biomass, plant extracts, etc. In this review we will illustrate in the first part recent examples of lignocellulosic materials, lignin, and nano-cellulose as reinforcements or fillers in various polymer matrices and in the second part various applications of plant extracts as active ingredients in food packaging materials based on polysaccharide matrices (chitosan/starch/alginate).


Coatings ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 141 ◽  
Author(s):  
Katalin Szabo ◽  
Bernadette-Emoke Teleky ◽  
Laura Mitrea ◽  
Lavinia-Florina Călinoiu ◽  
Gheorghe-Adrian Martău ◽  
...  

Active films were prepared from poly(vinyl alcohol) (PVA) blended with itaconic acid (Ia), and with chitosan (Ch), enriched with tomato processing by-products extract (TBE) in order to develop new bioactive formulations for food packaging. The effects of two biopolymers (Ch, Ia) and of the incorporated TBE—containing phenolic compounds and carotenoids—were studied regarding the physical and antimicrobial properties of films; in addition, their influence on the total phenolic content, viscosity, and flow behavior on the film-forming solutions was investigated. The results showed increased physical properties (diameter, thickness, density, weight) of the films containing the TBE versus their control. TBE and Ch conferred significant antimicrobial effects to PVA films toward all the tested microorganisms, whereas the best inhibition was registered against S. aureus and P. aeruginosa, with a minimum inhibitory concentration of <0.078 mg DW/mL. The Ia-PVA films also exhibited some antibacterial activity against P. aeruginosa (2.5 mg DW/mL). The total phenolic content of the film-forming solutions presented the highest values for the TBE and Ch-added PVA samples (0.208 mg gallic acid/100 mL film-forming solution). These results suggest that the PVA + Ch film containing TBE can be used for the development of intelligent and active food packaging materials.


Foods ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 1565
Author(s):  
Kang Hyun Lee ◽  
Youngsang Chun ◽  
Ye Won Jang ◽  
Soo Kweon Lee ◽  
Hyeong Ryeol Kim ◽  
...  

Carbon-neutral and eco-friendly biomass-based processes are recognized as a frontier technology for sustainable development. In particular, biopolymers are expected to replace petrochemical-based films that are widely used in food packaging. In this study, the fabrication conditions of functional (antioxidant and antibacterial) bioelastomers were investigated using by-products from the juice processing (experimental group) and freeze-dried whole fruit (control group). Bioelastomer was fabricated by a casting method in which polydimethylsiloxane (PDMS) was mixed with 25 or 50 wt% aronia powder (juice processing by-products and freeze-dried whole fruit). The mechanical properties of the bioelastomers were measured based on tensile strength and Young’s modulus. When the mixture contained 50 wt% aronia powder, the strength was not appropriate for the intended purpose. Next, the surface and chemical properties of the bioelastomer were analyzed; the addition of aronia powder did not significantly change these properties when compared to PDMS film (no aronia powder). However, the addition of aronia powder had a significant effect on antioxidant and antimicrobial activities and showed higher activity with 50 wt% than with 25 wt%. In particular, bioelastomers fabricated from aronia juice processing by-products exhibited approximately 1.4-fold lower and 1.5-fold higher antioxidant and antimicrobial activities, respectively, than the control group (bioelastomers fabricated from freeze-dried aronia powder).


Foods ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 1339
Author(s):  
Arantzazu Valdés García ◽  
Olga B. Álvarez-Pérez ◽  
Romeo Rojas ◽  
Cristobal N. Aguilar ◽  
María Carmen Garrigós

Active edible films based on corn starch containing glycerol as a plasticizer and an olive extract obtained from Spanish olive fruit (Olea europaea) by-products (olive extract; OE) at different concentrations (0, 0.05, 0.1 and 0.2 wt%) were prepared by using the casting technique and further solvent-evaporation. OE showed high total phenolic and flavonoids contents and antioxidant activity, which was evaluated by using three different methods: free radical scavenging assay by (1,1-dipheny l-2-picrylhydrazyl) DPPH, 2,2-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) ABTS radical inhibition and ferric reducing antioxidant power (FRAP). The incorporation of OE into the corn starch/glycerol matrix underlined the antioxidant potential and antimicrobial effect against E. coli and S. aureus of these novel active films, being noticeable for films added with 0.2 wt% OE. The developed active films showed a clear thermo-oxidative stability improvement with OE incorporation, in particular at 0.2 wt% loading with an increase of around 50 °C in the initial degradation temperature (Tini) and oxidation onset temperature (OOT). The functional properties of control films were also improved with OE addition resulting in a decrease in Young’s modulus, elongation at break, shore D hardness and water vapor permeability. The present work suggested the potential of the developed corn starch-based edible films as low-price and sustainable food packaging systems to prevent the oxidative deterioration of packaged foodstuff while reducing also the generation of olive by-products.


Coatings ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 550 ◽  
Author(s):  
Silvia Amalia Nemes ◽  
Katalin Szabo ◽  
Dan Cristian Vodnar

Nowadays, technological advancement is in continuous development in all areas, including food packaging, which tries to find a balance between consumer preferences, environmental safety, and issues related to food quality and control. The present paper concretely details the concepts of smart, active, and intelligent packaging and identifies commercially available examples used in the food packaging market place. Along with this purpose, several bioactive compounds are identified and described, which are compounds that can be recovered from the by-products of the food industry and can be integrated into smart food packaging supporting the “zero waste” activities. The biopolymers obtained from crustacean processing or compounds with good antioxidant or antimicrobial properties such as carotenoids extracted from agro-industrial processing are underexploited and inexpensive resources for this purpose. Along with the main agro-industrial by-products, more concrete examples of resources are presented, such as grape marc, banana peels, or mango seeds. The commercial and technological potential of smart packaging in the food industry is undeniable and most importantly, this paper highlights the possibility of integrating the by-products derived compounds to intelligent packaging elements (sensors, indicators, radio frequency identification).


Foods ◽  
2020 ◽  
Vol 9 (7) ◽  
pp. 857 ◽  
Author(s):  
Flavia Dilucia ◽  
Valentina Lacivita ◽  
Amalia Conte ◽  
Matteo A. Del Nobile

Fruit and vegetable by-products are the most abundant food waste. Industrial processes such as oil, juice, wine or sugar production greatly contribute to this amount. These kinds of residues are generally thrown away in form of leftover and used as feed or composted, but they are a great source of bioactive compounds like polyphenols, vitamins or minerals. The amount of residue with potential utilization after processing has been estimated in millions of tons every year. For this reason, many researchers all around the world are making great efforts to valorize and reuse these valuable resources. Of greatest importance is the by-product potential to enhance the properties of packaging intended for food applications. Therefore, this overview collects the most recent researches dealing with fruit and vegetable by-products used to enhance physical, mechanical, antioxidant and antimicrobial properties of packaging systems. Recent advances on synthetic or bio-based films enriched with by-product components are extensively reviewed, with an emphasis on the role that by-product extracts can play in food packaging materials.


Molecules ◽  
2021 ◽  
Vol 26 (13) ◽  
pp. 4031
Author(s):  
Banu Bayram ◽  
Gulay Ozkan ◽  
Tina Kostka ◽  
Esra Capanoglu ◽  
Tuba Esatbeyoglu

The important roles of food packaging are food protection and preservation during processing, transportation, and storage. Food can be altered biologically, chemically, and physically if the packaging is unsuitable or mechanically damaged. Furthermore, packaging is an important marketing and communication tool to consumers. Due to the worldwide problem of environmental pollution by microplastics and the large amounts of unused food wastes and by-products from the food industry, it is important to find more environmentally friendly alternatives. Edible and functional food packaging may be a suitable alternative to reduce food waste and avoid the use of non-degradable plastics. In the present review, the production and assessment of edible food packaging from food waste as well as fruit and vegetable by-products and their applications are demonstrated. Innovative food packaging made of biopolymers and biocomposites, as well as active packaging, intelligent packaging, edible films, and coatings are covered.


Proceedings ◽  
2021 ◽  
Vol 52 (1) ◽  
pp. 5
Author(s):  
N. Anes García ◽  
F. Blanco Álvarez ◽  
A. L. Marqués Sierra

There is an evolution and progress that has been taking place in recent years in science and technology and in the evolution of polymers that have created new plastic materials with excellent physical properties and durability. However, the plastic products that are made, generally have several applications, but for a single use, especially if it is in the part of food packaging, or for the pharmaceutical industry, in medical applications. Since these materials are not biodegradable, they remain on the surface of the earth for hundreds of years without considerable changes in their structure, causing pollution and damage to wildlife and the environment. With this research we intend to eliminate these plastics from petroleum derivatives, by biodegradable plastics. At the same time, the use of the generated by-products is sought, giving them an energy, thermal or fertilizer value.


Polymers ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1048
Author(s):  
Micaela Vannini ◽  
Paola Marchese ◽  
Laura Sisti ◽  
Andrea Saccani ◽  
Taihua Mu ◽  
...  

With the aim to fully exploit the by-products obtained after the industrial extraction of starch from sweet potatoes, a cascading approach was developed to extract high-value molecules, such as proteins and pectins, and to valorize the solid fraction, rich in starch and fibrous components. This fraction was used to prepare new biocomposites designed for food packaging applications. The sweet potato residue was added to poly(3-hydroxybutyrate-co-3-hydroxyvalerate) in various amounts up to 40 wt % by melt mixing, without any previous treatment. The composites are semicrystalline materials, characterized by thermal stability up to 260 °C. For the composites containing up to 10 wt % of residue, the tensile strength remains over 30 MPa and the strain stays over 3.2%. A homogeneous dispersion of the sweet potato waste into the bio-polymeric matrix was achieved but, despite the presence of hydrogen bond interactions between the components, a poor interfacial adhesion was detected. Considering the significant percentage of sweet potato waste used, the biocomposites obtained show a low economic and environmental impact, resulting in an interesting bio-alternative to the materials commonly used in the packaging industry. Thus, according to the principles of a circular economy, the preparation of the biocomposites closes the loop of the complete valorization of sweet potato products and by-products.


Sign in / Sign up

Export Citation Format

Share Document