Inter and Intra-specific Variation in SDS-PAGE Electrophoregrams of Total Seed Protein in Chickpea (Cicer arietinum L.) Germplasm

2003 ◽  
Vol 6 (24) ◽  
pp. 1991-1995 ◽  
Author(s):  
Rehana Asghar ◽  
Tayyaba Siddique ◽  
Muhammad Afzal
2017 ◽  
Vol 9 (2) ◽  
pp. 706-709
Author(s):  
M. Chittora ◽  
A. Sukhwal ◽  
Chandraveer Chandraveer ◽  
G. Verma

SDS-PAGE technique was used for the study of seed protein polymorphism among three genotypes of Cicer arietinum with different seed coat colour. A total of 24 polypeptide bands were recorded. Out of these 20 were common among all three genotypes and 4 (16.66%) were polymorphic. The data analysis using UPGMA clustering revealed that genotypes with C2 (dark brown) and C3 (black) were closer as compared to genotype with C1 (light brown) coat colour. Jaccard similarity coefficient value ranged from 0.87 to 0.92. The similarity matrix was subjected to UPGMA clustering to generate dendrogram. The most closely revealed genotypes were C2 (dark brown) and C3 (black) with the highest similarity index 0.92 whereas, C1 (light brown) showed minimum similarity index with C3 (black) genotype 0.87. Each of three genotypes of C.arietinum had some polypeptide bands which were peculiar to them only. This enabled distinguishing all three genotypes on the basis of specific polypeptide fragments using SDS-PAGE analysis.


2004 ◽  
Vol 7 (2) ◽  
pp. 139-143 ◽  
Author(s):  
Rehana Asghar ◽  
Rabia Siddique . ◽  
Muhammad Afzal . ◽  
Shamim Akhtar .

Agronomy ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 801
Author(s):  
Jerzy Księżak ◽  
Jolanta Bojarszczuk

A field study was conducted at the Agricultural Experimental Station in Grabów in Poland between 2017–2018. This study evaluated seed yield and chemical composition of chickpeas (Cicer arietinum L.) under organic conditions, either growing as a sole crop, or with barley (Hordeum vulgare) or oats (Avena sativa L.) as supporting plants. Two chickpea types were included in experiment scheme: kabuli and desi. The experiment was established as a split-plot design with four replicates. The study showed that a higher total seed yields of both forms of chickpeas grown in both pure sowing and with spring cereals was obtained in 2018 than 2017. The higher yield in this study period was the result of a greater number of pods, seeds, and higher weight of the chickpea seed and cereal grains on a plant. Higher yields were noted in chickpeas grown with supporting crops than in sole cropping. Significantly better thousand seed weight of both botanical forms of chickpeas was observed in chickpeas grown in sole cropping than with supporting plants. Regardless of cropping method, the desi form was characterized by higher yields than the kabuli type, and its percentage in seed yields of chickpeas grown with cereals was higher than the kabuli type. The highest seed yields were obtained in chickpeas grown with oats. Neither chickpea type had a significant effect on the height of cereal plant, the number of grains on each plant, the number of producing shoots or thousandgrainweight of the two cereal species. Regardless of cropping method, the highest content of fiber and fat was determined in desi-type seeds, while the highest protein and phosphorus content was characterized kabuli-type seeds.


2003 ◽  
Vol 16 (1) ◽  
pp. 35 ◽  
Author(s):  
Alicia L. Lamarque ◽  
Renée H. Fortunato

Total seed proteins of 10 Acacia species were examined by SDS–PAGE. The protein patterns showed qualitative and quantitative differences among the taxa analysed. The main protein components of most species examined had MW's in the range of 38.5–49.0 × 103. Subgenus Aculeiferum differed from subg. Acacia in the presence of a high concentration of proteins in the range of 20–24.5 × 103. Hierarchical clustering of the 10 taxa was undertaken, based on Jaccard distances calculated from electrophoretic data. The species grouped in two main clusters, representing the two subgenera of Acacia that occur in America, namely subg. Acacia and subg. Aculeiferum. The taxonomic placement of Acacia emilioana, a species with uncertain sectional affinity within subg. Aculeiferum, is discussed.


Author(s):  
Dragana Obreht ◽  
Ljiljana Vapa ◽  
Sándor Kis ◽  
Mária-Hajos Takács ◽  
Éva-Bányai Stefánovics ◽  
...  

Total seed proteins in two safflower species (Carthamus tinctorius L. and C. lanatus L) have been separated by the SDS-PAGE method. Their molecular masses ranged from 120 to 20 kDa. All C. tinctorius genotypes under study exhibited identical electrophoretic patterns which differed from the pattern exhibited by the wild species C. lanatus in the number and position of protein bands. Differences in protein profiles occurred in regions around 60 kDa, from 43 to 36 kDa and around 30 kDa. Statistically significant differences in seed protein content were found among safflower genotypes from different countries as well as among genotypes from the same country but from different sites. The highest seed protein content was found in a genotype originating from the USA.


Sign in / Sign up

Export Citation Format

Share Document