scholarly journals Analysis of the influence of partial replacement of mineral aggregate by basaltic rock dust on the production of industrialized adhesive mortar

2021 ◽  
Vol 71 (341) ◽  
pp. e240
Author(s):  
L.C. Lentz ◽  
E.G.P. Antunes

The production of adhesive mortar uses large proportions of sand, causing undesirable environmental impact as this is a finite resource. In recent years, the insertion of civil construction waste in cement matrixes has intensified with the objective of replacing sand in the mortar manufacturing process. Therefore, in this study, the proportions of 5%, 10%, 15% substitution of the mineral aggregate by basalt dust waste in the production of industrialized adhesive mortar were adopted. The reference mixture of 1:3 (cement: sand) was adopted and the water/dry material ratio was set at 0.20. The adhesive mortars produced in the tests to determine the consistency index, water retention, mass density, open time, tensile strength and water absorption by capillarity were analyzed. The results were satisfactory, demonstrating that it is feasible to use the waste as a substitute for sand in the production of industrialized adhesive mortars.

2014 ◽  
Vol 1054 ◽  
pp. 90-94 ◽  
Author(s):  
Michal Ženíšek ◽  
Tomáš Vlach ◽  
Lenka Laiblová

This article deals with influence of the ground granulated blast furnace slag (GGBS) in the mixture of high performance concrete. It is a powder active addition used in concrete which is characterized certain cementitious properties. Influence of this addition was experimentally verified. In the first series, partial replacement of cement by GGBS was tested. In the second series, GGBS was added to the original reference mixture. Studied parameters were compressive strength, tensile strength and workability. The tests have shown that a partial replacement of the cement by GGBS is possible for achieving the desired workability or if we need to reduce the price of concrete.


2021 ◽  
Vol 3 (4) ◽  
Author(s):  
S. Y. Amakye ◽  
S. J. Abbey ◽  
A. O. Olubanwo

AbstractThe reuse of waste materials in civil engineering projects has become the topic for many researchers due to their economic and environmental benefits. In this study, brick dust waste (BDW) derived from cutting of masonry bricks and demolition waste which are normally dumped as land fill is used as partial replacement of cement in a concrete mix at 10%, 20% and 30% respectively, with the aim of achieving high strength in concrete using less cement due to the environmental problems associated with the cement production. To ascertain the effects of BDW on the consistency and mechanical performance of concrete mix, laboratory investigations on the workability of fresh concrete and the strength of hardened concrete were carried out. Slump and compaction index test were carried out on fresh concrete mix and unconfined compressive strength (UCS) test and tensile strength test were conducted on hardened concrete specimen after 7, 14 and 28 days of curing. The results showed high UCS and tensile strength with the addition of 10% BDW to the concrete mix, hence achieving the set target in accordance with the relevant British standards. A gradual reduction in strength was observed as BDW content increases, however, recording good workability as slump and compaction index results fell within the set target range in accordance with relevant British standards. Findings from this study concluded that BDW can partially replace cement in a concrete mix to up to 30% igniting the path to a cleaner production of novel concrete using BDW in construction work.


2001 ◽  
Vol 31 (8) ◽  
pp. 731-735 ◽  
Author(s):  
G. E. Piérard ◽  
C. Piérard-Franchimont ◽  
S. Vanderplaetsen ◽  
N. Franchimont ◽  
U. Gaspard ◽  
...  

Author(s):  
Shahid Bashir

Abstract: Cement production is one of the sources that emit carbon dioxide, in addition to deforestation and combustion of fossil fuels also leads to ill effects on environment. The global cement industry accounts for 7% of earth’s greenhouse gas emission. To enhance the environmental effects associated with cement manufacturing and to constantly deplore natural resources, we need to develop other binders to make the concrete industry sustainable. This work offers the option to use waste paper sludge ash as a partial replacement of cement for new concrete. In this study cement in partially replaced as 5%, 10%, 15% and 20% by waste paper sludge ash in concrete for M25 mix and tested for compressive strength, tensile strength, water absorption and dry density up to the age of 28days and compared it with conventional concrete, based on the results obtained, it is found that waste paper ash may be used as a cement replacement up to 5% by weight and the particle size is less the 90µm to prevent reduction in workability. Keywords: slump test, Compressive strength, split tensile strength, water absorption test, Waste Paper Sludge Ash Concrete, Workability.


Reactive powder concrete (RPC) is the ultra-high strength concrete made by cementitious materials like silica fumes, cement etc. The coarse aggregates are completely replaced by quartz sand. Steel fibers which are optional are added to enhance the ductility. Market survey has shown that micro-silica is not so easily available and relatively costly. Therefore an attempt is made to experimentally investigate the reduction of micro-silica content by replacing it with fly-ash and mechanical properties of modified RPC are investigated. Experimental investigations show that compressive strength decreases gradually with addition of the fly ash. With 10 per cent replacement of micro silica, the flexural and tensile strength showed 40 and 46 per cent increase in the respective strength, though the decrease in the compressive strength was observed to be about 20 per cent. For further percentage of replacement, there was substantial drop in compressive, flexural as well as tensile strength. The experimental results thereby indicates that utilisation of fly-ash as a partial replacement to micro silica up to 10 per cent in RPC is feasible and shows quite acceptable mechanical performance with the advantage of utilisation of fly-ash in replacement of micro-silica.


Author(s):  
S. E. Ubi

The use of polystyrene beads in concrete applications has been limited due to its perceived low strength properties. Tensile strength test is an important test that determines the vulnerability of concrete to tensile cracking due to the weight of the structural load. Water, sand, coarse aggregates, expanded polystyrene beads, and ordinary Portland cement are the materials used for this study. All the materials were batched according to their weight, except for polystyrene and coarse aggregates which were batched in volume after mixing them together. The polystyrene partial replacement level was considered at 12% of the coarse aggregate volume. The model equation adopted for this study was based on Scheffe’s {4, 2} simplex lattice design for both Pseudo component and component proportional models. The actual model was developed from the 28th day test result. The Mathlab and Minitab 16 software were used in this study to generate the actual mix ratios. The results obtained showed that both Pseudo component and component proportional models both produced an average split tensile strength of about 5.10N/mm2. This implied that the results of this study produced a split tensile strength result that varied between 18% - 19% of its compressive strength result. This showed that the materials and the mix ratios optimized in this study are suitable as building blocks for residential low rising buildings and as partition slaps for high rising buildings. The lightweight property makes it highly suitable for large scale application in high rising structures as internal partition slaps only.


2015 ◽  
Vol 52 (11) ◽  
pp. 1874-1885 ◽  
Author(s):  
Bibiana Narvaez ◽  
Michel Aubertin ◽  
Faustin Saleh-Mbemba

Bending tests were conducted on specimens of unsaturated tailings from three hard rock mines to evaluate their tensile strength. Saturated samples were prepared at an initial water content, w0, of 40% and then naturally dried under ambient conditions to pre-selected degrees of saturation, Sr, which can be related to the corresponding suction using the water retention curve. The basic interpretation of the bending tests results is based on an elastic–brittle behavior. The results show how the tensile strength, σt, of unsaturated tailings varies with water content, w (and Sr). The experimental data are also used to evaluate Young’s modulus in tension, Et, and to estimate the apparent cohesion, capp, as a function of Sr. Predictive equations are also applied to estimate the values of σt of unsaturated tailings using the water retention curve.


Fibers ◽  
2020 ◽  
Vol 8 (11) ◽  
pp. 69
Author(s):  
Afonso R. G. de Azevedo ◽  
Sergey Klyuev ◽  
Markssuel T. Marvila ◽  
Nikolai Vatin ◽  
Nataliya Alfimova ◽  
...  

Curauá is a bromeliad of Amazonian origin, present in some states in the northern region of Brazil and in other countries in South America. Its natural fibers have several technological advantages for application in composite materials. The objective of this research was to investigate the potential of using the fiber of Curauá as a reinforcement element in mortars for wall covering. Mortars were made with a 1:1:6 ratio (cement:lime:sand) in relation to their mass, evaluating the effect of adding 1%, 2% and 3% of Curauá fiber natural and fiber treated in NaOH solution in relation to the mass of cement, compared to the reference mixture (0%). Technological properties such as consistency, water retention and incorporated air content, compressive strength, water absorption and durability in wetting and drying cycles were evaluated. The results showed that the addition of the Curauá fiber causes an improvement in the mechanical properties of mortars, and at levels of addition 3% or more, it causes problems of workability and incorporation of air into the dough, thus, the fiber addition in 2% presented better results for application in coating mortars, in relation a Brazilian norm, even improving the durability of external coatings.


Sign in / Sign up

Export Citation Format

Share Document