scholarly journals Residential Drain Water Heat Recovery Systems: Modeling, Analysis, and Implementation

2010 ◽  
Vol 5 (3) ◽  
pp. 85-94 ◽  
Author(s):  
Scott Bartkowiak ◽  
Ryan Fisk ◽  
Andrew Funk ◽  
Jonathan Hair ◽  
Steven J Skerlos

This paper describes the design and environmental improvements that can be achieved using drain water heat recovery systems (DWHR) to reduce the energy consumption associated with residential showering. DWHR systems transfer heat from hot drain water to the shower's incoming cold water stream, thus reducing the demand on the hot water heater. There are various DWHR systems available that differ in heat exchanger type, cost, and performance. This article focuses on designing a flat plate and gravity fed heat exchangers for a range of residential showering conditions. This is useful since there currently is no peer-reviewed published data on the effectiveness of DWHR, nor is there published research considering the emissions reductions that can be achieved with realistic DWHR systems. The governing equations for heat exchangers are used to model empirical data and to derive implementation recommendations for DWHR design. The model is validated using a prototype flat plate heat exchanger and test stand under varying flow rates and temperatures. A Monte Carlo simulation of the results showed that DWHR could save an average $74 a year for homes with natural gas water heaters and $160 a year for homes with electric water heaters. This corresponds to 0.3 metric tons and 1.5 metric tons of CO2offset per home per year for natural gas and electric water heaters, respectively. The results are compiled and organized into a software program that allows consumers to input their household showering habits and location to get an estimate of their CO2, energy, and cost savings to determine if they should install a DWHR system.

Author(s):  
N. F. Timerbaev ◽  
A. K. Ali ◽  
Omar Abdulhadi Mustafa Almohamed ◽  
A. R. Koryakin

In this article, a mathematical simulation of a double pipe heat exchanger is carried out, having the longitudinal rectangular fins with the dimension of (2*3*1000) mm, mounted on the outer surface of the inner tube of the heat exchanger. In this paper, the advantage of using of that type of fins and its effect on the effectiveness of the heat exchanger are studied with the help of the computer program. The carried out research allowsmaking the calculation to find the optimum design parameters of heat exchangers. The outer tube diameter is (34.1mm) while the inner tube diameter is (16.05mm). The tubes wall thickness is (1.5mm) and the model length was (1 m). The hot water is flowing through the inner tube in parallel with the cold water that passing the outer tube. The hot and cold water temperature at the inlet is (75°C & 30°C) respectively. The mass flow rate inside the central pipe is (0.1 kg/s) while the annular pipe carrying (0.3 kg/s). In the present work, the program ANSYS Workbench 15.0 was used to find out the results of heat transfer as well as the behavior of liquids inside the heat exchangers.


2019 ◽  
Vol 116 ◽  
pp. 00018 ◽  
Author(s):  
Edyta Dudkiewicz ◽  
Agnieszka Ludwińska ◽  
Krzysztof Rajski

The constant demand for domestic hot water (DHW) creates great opportunity for drain water heat recovery (DWHR) systems in hospitals, so there is an enormous potential to reduce energy consumption in accordance to the EU environmental policy. This paper aims to assess the energy saving from greywater in hospitals. The energy analysis considered the type, constructions, efficiency of the proposed four types of heat exchangers (HEX). The measured data from two Polish hospitals was elaborated and calculated for two supply cold water temperatures: constant and variable. Results ensure that implementation of HEX type GFX allows to save up 30% of the energy demand.


Energies ◽  
2020 ◽  
Vol 13 (16) ◽  
pp. 4113 ◽  
Author(s):  
Kamil Pochwat ◽  
Sabina Kordana-Obuch ◽  
Mariusz Starzec ◽  
Beata Piotrowska

The growing interest in the use of unconventional energy sources is a stimulus for the development of dedicated devices and technologies. Drain water heat recovery (DWHR) units can be an example of such devices. They allow the recovery of part of the heat energy deposited in grey water. This paper describes the results of research on the assessment of the financial profitability of the use of two horizontal heat exchanger solutions, taking into account the actual distribution of cold water temperature during the operating year in the plumbing and two operating regimes of the premises as the residential and service facilities. The analysis showed that the use of a horizontal heat exchanger with increased efficiency in a dwelling in a 15-year life cycle allowed for achieving more than twice as much savings (reaching up to EUR 1427) compared to a classic horizontal heat exchanger. At the same time, it was shown that the installation of this type of equipment was more profitable the greater the water consumption of the premises. The article also notes the impact of cold water temperature in the installation on the results of the analysis. It was featured that taking temperature on the basis of installation design recommendations led to significant distortions in the financial analysis. On the other hand, comparing the method of averaging the cold water temperature (daily, monthly and yearly), it was determined that averaging the temperature over the annual cycle was an acceptable simplification of the model. The research results presented in the paper have a practical aspect and may constitute guidelines for designers and potential investors. In addition, they can be an incentive to continue research on heat exchangers by other scientific centers, which on a global scale will increase the universality of their use.


Author(s):  
Kenta Kimoto ◽  
Hitoshi Asano ◽  
Masafumi Sakurai ◽  
Tetsuro Hamada ◽  
Makoto Hirotsu ◽  
...  

Hot-water supply has high percentage of energy consumption in Japanese civilian sector. Gas water heaters are used in most cases. Therefore, improvement in thermal efficiency of a gas water heater is an important issue for energy saving. In order to improve thermal efficiency of a gas water heater, an additional heat exchanger is required for latent heat recovery from exhaust humid combustion. The purpose of this study is to develop a compact latent heat recovery heat exchanger with a simple configuration. It is necessary for compactness to reduce the gap between the heat transfer tubes. However, the narrow gap will cause stagnation of condensed water. In order to remove the condensed water from horizontal tube bank, three kinds of tubes with different surface treatments, polished tubes, unpolished tube, and smooth tube with circular micro-grooves, were examined. As the result, condensed water was easily removed by the groove with the 0.7mm depth, to avoid the formation of water bridges between tubes. The effect could lead to no deterioration in the heat transfer performance by decreasing the tube clearance to 1.0mm.


2012 ◽  
Vol 608-609 ◽  
pp. 1231-1235
Author(s):  
Fang Tian Sun ◽  
Na Wang ◽  
Xiao Gang Gong ◽  
Yun Ze Fan ◽  
De Ying Li

Heat utilization efficiency of barbershop was about 16.7% in China, because the low-temperature waste water at 30~36°C was directly discharged into sewer. And match of energy grade was not appropriate, because electric water heaters were used to producing hot water at 55~70°C in most of barbershops. A waste heat recovery system with water-to-water heat exchanger (WHR-HE) was presented, according to heat utilization characteristics of barbershop and scientific principle of energy utilization. WHR-HE was analyzed by the first Law of thermodynamics and economics. The analyzed results show that energy consumption can be reduced about 75%, and incremental payback period is less one year for WHR-HE. There is optimal cold side temperature difference of water-to-water heat exchanger.


2021 ◽  
Vol 16 ◽  
pp. 145-152
Author(s):  
Farid Ahmed ◽  
Md Minaruzzaman Sumon ◽  
Muhtasim Fuad ◽  
Ravi Gugulothu ◽  
AS Mollah

Heat exchangers are almost used in every industry. Among them, shell and tube heat exchangers are covering around 32% of the total heat exchanger. Numerical simulation of the Computational models is playing an important role for the prototypes including the Heat Exchanger Models for the improvement in modeling. In this study, the CFD analysis of parallel and counter flow shell and tube heat exchanger was performed. Following project, looked into the several aspects and these are the temperature, velocity, and pressure drop and turbulence kinetic energy along with the heat exchanger length. Hot water was placed in tube side and cold water was placed in shell side of the heat exchanger. Shell side cold temperature was increasing along the heat exchanger length. On the other side, tube side hot water temperature was decreasing along the tube length. This effect was more significance in counter flow rather than the parallel flow. Velocity was more fluctuating in the shell side due to presence of the baffles. Also following the same reason, pressure drop was higher in the shell side cold water rather than the tube side hot water. To measure the turbulence effect, turbulence kinetic energy was determined. Turbulence was decreasing first part of the shell and tube heat exchanger. But, it was increasing along through the rest part heat exchanger. All these observations and the outcomes are evaluated and then further analyzed


2018 ◽  
Vol 6 (3) ◽  
pp. 1-12
Author(s):  
Kamil Abdul Hussien

Abstract-The present work investigates the enhancement of heat transfer by using different number of circular fins (8, 10, 12, 16, and 20) in double tube counter flow heat exchanger experimentally. The fins are made of copper with dimensions 66 mm OD, 22 mm ID and 1 mm thickness. Each fin has three of 14 mm diameter perforations located at 120o from each to another. The fins are fixed on a straight smooth copper tube of 1 m length, 19.9 mm ID and 22.2 mm OD. The tube is inserted inside the insulated PVC tube of 100 mm ID. The cold water is pumped around the finned copper tube, inside the PVC, at mass flow rates range (0.01019 - 0.0219) kg/s. The Reynold's number of hot water ranges (640 - 1921). The experiment results are obtained using six double tube heat exchanger (1 smooth tube and the other 5 are finned one). The results, illustrated that the heat transfer coefficient proportionally with the number of fin. The results also showed that the enhancement ratio of heat transfer for finned tube is higher than for smooth tube with (9.2, 10.2, 11.1, 12.1 13.1) times for number of fins (8, 10, 12, 16 and 20) respectively.


2012 ◽  
Vol 204-208 ◽  
pp. 4229-4233 ◽  
Author(s):  
Fang Tian Sun ◽  
Na Wang ◽  
Yun Ze Fan ◽  
De Ying Li

Drain water at 35°C was directly discharged into sewer in most of barbershop with Electric water heater. Heat utilization efficiency is lower, and energy grade match between input and output is not appropriate in most of barbershops. Two waste heat recovery systems were presented according to the heat utilization characteristics of barbershops and principle of cascade utilization of energy. One was the waste heat recovery system by water-to-water heat exchanger (WHR-HE), and the other is the waste heat recovery system by water-to-water heat exchanger and high-temperature heat pump (WHR-CHEHP). The two heat recovery systems were analyzed by the first and second Laws of thermodynamic. The analyzed results show that the energy consumption can be reduced about 75% for HR-HE, and about 98% for WHR-CHEHP. Both WHR-HE and WHR-CHEHP are with better energy-saving effect and economic benefits.


2021 ◽  
Vol 9 (1) ◽  
pp. 60-71
Author(s):  
Abeth Novria Sonjaya ◽  
Marhaenanto Marhaenanto ◽  
Mokhamad Eka Faiq ◽  
La Ode M Firman

The processed wood industry urgently needs a dryer to improve the quality of its production. One of the important components in a dryer is a heat exchanger. To support a durable heat transfer process, a superior material is needed. The aim of the study was to analyze the effectiveness of the application of cross-flow flat plate heat exchangers to be used in wood dryers and compare the materials used and simulate heat transfer on cross-flow flat plate heat exchangers using Computational Fluid Dynamic simulations. The results showed that there was a variation in the temperature out of dry air and gas on the flat plate heat exchanger and copper material had a better heat delivery by reaching the temperature out of dry air and gas on the flat plate type heat exchanger of successive cross flow and.   overall heat transfer coefficient value and the effectiveness value of the heat exchanger of the heat transfer characteristics that occur with the cross-flow flat plate type heat exchanger in copper material of 251.74725 W/K and 0.25.


Sign in / Sign up

Export Citation Format

Share Document