COMPARATIVE ANALYSIS OF ELBOW JOINT LOADING IN PUSH-UP AND BENCH-PRESS

2011 ◽  
Vol 23 (01) ◽  
pp. 21-28 ◽  
Author(s):  
Pei-Hsi Chou ◽  
Shu-Zon Lou ◽  
Shen-Kai Chen ◽  
Hsin-Chieh Chen ◽  
Hsiu-Hao Hsu ◽  
...  

Upper extremity pain and dysfunction are common orthopedic problems in individuals who practice physical activities involving the upper limbs. Push-ups (PUs) and bench-presses (BPs), representing closed kinetic chain (CKC) and open kinetic chain (OKC) exercises, respectively, are among the most popular training exercises for the upper extremity in sports training and clinical rehabilitation applications. Utilizing a self-developed exercise testing model, the present study examines the difference in elbow joint loading between OKC and CKC exercises of the upper extremity. As many as 15 physically healthy male subjects with an average age of 19.8 years (S.D. 1.4), an average height of 176.8 cm (S.D. 4.2), and an average weight of 69.27 kg (S.D. 5.0) were studied. Each subject was asked to perform two different types of exercise, namely PUs and BPs. The kinematics, kinetics, and muscle activation of the elbow joint were calculated and analyzed using laboratory-developed motion analysis procedures. The PU exercises result in a greater loading on the elbow joint than the BP exercises, but produce a lower muscle activation. OKC exercises yield a greater muscle strengthening effect than CKC exercises. The increased shear stress on the elbow joint should be carefully noted when performing PU exercises. The results presented in this study provide valuable information for treatment and rehabilitation purposes in clinical applications.

2008 ◽  
Vol 20 (03) ◽  
pp. 185-189 ◽  
Author(s):  
Pei-Hsi Chou ◽  
Shu-Zon Lou ◽  
Shen-Kai Chen ◽  
Hsin-Chieh Chen ◽  
Tzu-Hsiang Hsia ◽  
...  

The bench press is one of the most popular weight training open-kinetic chain exercise (OKCE) for the upper extremity. Reviewing the literature, there is a very little research regarding the biomechanical analysis of the OKCE of the upper extremity. The purpose of this study is to develop an OKCE testing model of the upper extremity by using the 3D Motion Analysis System. Furthermore, elbow joint loading of two different hand grip position during the bench-press exercise will be investigated. Thirteen male students volunteered for the study. Their average age was 26.1 years, with an average height of 170.6 cm, and an average weight of 70.3 kg. With both hands in neutral position, each subject was asked to perform bench-press type 1 (normal shoulder width), and bench-press type 2 (150% shoulder width). During the type 2 bench-press exercise, there is a significant increase in anterior–posterior and medial–lateral force on the elbow joint loading than the type 1 bench-press exercise. The valgus–varus, flexion–extension moment, and supination–pronation moment of the type 2 bench-press exercise are also greater than the type 1 bench-press exercise. As shown in this study, keeping the distance of both hand grips as shoulder width may reduce the elbow joint loading during bench-press exercise. These data will provide helpful information in clinical rehabilitation and treatment of the upper-extremity injures.


2014 ◽  
Vol 49 (3) ◽  
pp. 317-321 ◽  
Author(s):  
Yen-Po Huang ◽  
You-Li Chou ◽  
Feng-Chun Chen ◽  
Rong-Tyai Wang ◽  
Ming-Jer Huang ◽  
...  

Context: Bench-press exercises are among the most common form of training exercise for the upper extremity because they yield a notable improvement in both muscle strength and muscle endurance. The literature contains various investigations into the effects of different bench-press positions on the degree of muscle activation. However, the effects of fatigue on the muscular performance and kinetics of the elbow joint are not understood fully. Objective: To investigate the effects of fatigue on the kinetics and myodynamic performance of the elbow joint in bench-press training. Design: Controlled laboratory study. Setting: Motion research laboratory. Patients or Other Participants: A total of 18 physically healthy male students (age = 19.6 ± 0.8 years, height = 168.7 ± 5.5 cm, mass = 69.6 ± 8.6 kg) participated in the investigation. All participants were right-hand dominant, and none had a history of upper extremity injuries or disorders. Intervention(s): Participants performed bench-press training until fatigued. Main Outcome Measure(s): Maximal possible number of repetitions, cycle time, myodynamic decline rate, elbow-joint force, and elbow-joint moment. Results: We observed a difference in cycle time in the initial (2.1 ± 0.42 seconds) and fatigue (2.58 ± 0.46 seconds) stages of the bench-press exercise (P = .04). As the participants fatigued, we observed an increase in the medial-lateral force (P = .03) and internal-external moment (P ≤ .04) acting on the elbow joint. Moreover, a reduction in the elbow muscle strength was observed in the elbow extension-flexion (P ≤ .003) and forearm supination-pronation (P ≤ .001) conditions. Conclusions: The results suggest that performing bench-press exercises to the point of fatigue increases elbow-joint loading and may further increase the risk of injury. Therefore, when clinicians design bench-press exercise regimens for general athletic training, muscle strengthening, or physical rehabilitation, they should control carefully the maximal number of repetitions.


2018 ◽  
Vol 46 (5) ◽  
pp. 1114-1119 ◽  
Author(s):  
Brett S. Pexa ◽  
Eric D. Ryan ◽  
Joseph B. Myers

Background: Previous research indicates that the amount of valgus torque placed on the elbow joint during overhead throwing is higher than the medial ulnar collateral ligament (UCL) can tolerate. Wrist and finger flexor muscle activity is hypothesized to make up for this difference, and in vitro studies that simulated activity of upper extremity musculature, specifically the flexor digitorum superficialis and flexor carpi ulnaris, support this hypothesis. Purpose: To assess the medial elbow joint space at rest, under valgus stress, and under valgus stress with finger and forearm flexor contraction by use of ultrasonography in vivo. Study Design: Controlled laboratory study. Methods: Participants were 22 healthy males with no history of elbow dislocation or UCL injury (age, 21.25 ± 1.58 years; height, 1.80 ± 0.08 m; weight, 79.43 ± 18.50 kg). Medial elbow joint space was measured by use of ultrasonography during 3 separate conditions: at rest (unloaded), under valgus load (loaded), and with a maximal grip contraction under a valgus load (loaded-contracted) in both limbs. Participants lay supine with their arm abducted 90° and elbow flexed 30° with the forearm in full supination. A handgrip dynamometer was placed in the participants’ hand to grip against during the contracted condition. Images were reduced in ImageJ to assess medial elbow joint space. A 2-way (condition × limb) repeated-measures analysis of variance and Cohen’s d effect sizes were used to assess changes in medial elbow joint space. Post hoc testing was performed with a Bonferroni adjustment to assess changes within limb and condition. Results: The medial elbow joint space was significantly larger in the loaded condition (4.91 ± 1.16 mm) compared with the unloaded condition (4.26 ± 1.23 mm, P < .001, d = 0.712) and the loaded-contracted condition (3.88 ± 0.94 mm, P < .001, d = 1.149). No significant change was found between the unloaded and loaded-contracted conditions ( P = .137). Conclusion: Medial elbow joint space increases under a valgus load and then decreases when a maximal grip contraction is performed. This indicates that wrist and finger flexor muscle contraction may assist in limiting medial elbow joint space, a result similar to findings of previous research in vitro. Clinical Relevance: Muscle activation of the upper extremity limits the medial elbow joint space, suggesting that injury prevention programs for throwing athletes should incorporate exercises for the elbow, wrist, and hand to limit excessive medial elbow joint space gapping during activities that create high valgus load.


2020 ◽  
Vol 29 (2) ◽  
pp. 200-205
Author(s):  
Hong-Wen Wu ◽  
Cheng-Feng Tsai ◽  
Kai-Han Liang ◽  
Yi-Wen Chang

Context: Squats and lunges are common exercises frequently applied in muscle-strengthening and therapeutic exercises. The loading devices are often used to increase the training intensity. Objective: To determine the effect of loading devices on muscle activation in squat and lunge and to compare the differences in muscle activation between squat and lunge. Design: Cross-sectional cohort. Participants: Nineteen healthy, male, recreationally active individuals without a history of lower limb injury. Interventions: Each participant performed 10 repetitions of a squat under 5 conditions: unloaded, barbell, dumbbell, loaded vest, and kettlebell, and 10 repetitions of a lunge under 4 conditions: unloaded, barbell, dumbbell, and loaded vest. Main Outcome Measures: The electromyography signals of quadriceps, hamstrings, tibialis anterior, gastrocnemius lateralis and medialis were measured. One-way repeated-measure analysis of variance was used to compare the difference among different loading conditions. Paired t test was used to compare the difference between squat and lunge. Results: The muscle activation in the loaded conditions was significantly higher than that in nonloaded conditions in squat and lunge. Compared with the barbell, dumbbell, and loaded vest conditions, the semitendinosus showed significantly higher activation, and the tibialis anterior showed significantly lower activation in kettlebell condition in squat. No significant difference in muscle activation was found among barbell, dumbbell, and kettlebell conditions in lunge. In addition, quadriceps and hamstring activities were significantly higher in lunge than in squat. Conclusions: Muscle activation was affected by the loading devices in squat but not affected in lunge. Kettlebell squat could be suggested for targeting in strengthening medial hamstring. Progressive strengthening exercise could be recommended from squat to lunge based on sequential activation level.


2020 ◽  
Vol 9 (1) ◽  
pp. 49-54
Author(s):  
Nelatul Izzah ◽  
Sri Sularti Dewanti Handayani

Breast milk is the best food for babies. WHO recommends exclusive breastfeeding during the first 6 months of birth in infants. Breast milk contains all the substances that babies need. However, there are still babies who are not given exclusive breastfeeding and have never even felt breast milk. This is due to the mother's breastmilk not coming out, working mothers, or the production of breastmilk that is felt to be inadequate in meeting the needs of the baby. This study discusses the differences in growth focused on the weight and height of children aged 14-23 months who drink breast milk and infant formula. This type of research is a comparative study with cross sectional design. The population is 115 children aged 12-24 months in Sekaran village. As in this study, respondents are 30 mothers who have children aged 14-23 months. While the sample is 15 children who drink breast milk and 15 children who drink infant formula. The sampling technique uses purposive sampling, where the sample is selected according to predetermined inclusion criteria. Data collection is done through questionnaires, interviews, and documentation. Growth data is seen through KMS (health card), filling questionnaires, and interviews with respondents. Hypothesis testing uses an independent t test. The results showed that there are differences in body weight and height growth between children aged 14-23 months who are breastfeed and who take infant formula. The average weight growth value of children who drink breast milk is 10.94 and children who drink formula milk 11.83. The average height growth value of children who drink breast milk is 81.85 and children who drink formula milk 78.46. The difference in average body weight of children who drink breast milk with children who drink formula milk is 1.43. While the difference in the average height of a child who drinks milk with a child who drinks formula milk is 3.39.


2003 ◽  
Vol 35 (3) ◽  
pp. 417-425 ◽  
Author(s):  
Stefan M. Duma ◽  
Brian M. Boggess ◽  
Jeff R. Crandall ◽  
Shepard R. Hurwitz ◽  
Kazuhiro Seki ◽  
...  

2008 ◽  
Vol 43 (5) ◽  
pp. 464-469 ◽  
Author(s):  
W. Steven Tucker ◽  
Brian M. Campbell ◽  
Erik E. Swartz ◽  
Charles W. Armstrong

Abstract Context: The Cuff Link is a closed kinetic chain rehabilitation apparatus for the upper extremity. Limited research has established its effectiveness to elicit muscle activation of the scapular muscles. Objective: To determine if scapular muscle activation differs in response to 2 upper extremity closed kinetic chain exercises: Cuff Link and standard push-up. Design: A single-group, repeated-measures design. Setting: Controlled laboratory. Patients or Other Participants: Twenty-eight healthy individuals (13 women: age  =  19.69 ± 1.55 years, height  =  167.44 ± 9.52 cm, mass  =  61.00 ± 8.79 kg; 15 men: age  =  22.00 ± 3.91 years, height  =  181.44 ± 6.60 cm, mass  =  82.36 ± 13.23 kg) with no history of shoulder or low back injury volunteered to participate in this study. Intervention(s): Participants performed 10 trials of complete revolutions on the Cuff Link and 10 full–weight-bearing push-ups. We controlled trial velocity and randomized order. Trunk and shoulder positions were normalized to the participant's height. Using surface electromyography, we recorded muscle activity of the serratus anterior, middle trapezius, and lower trapezius. Rectified and smoothed electromyography data for the serratus anterior, middle trapezius, and lower trapezius were normalized as a percentage of the maximal voluntary isometric contractions (%MVIC). Main Outcome Measure(s): Mean muscle activity of the serratus anterior, middle trapezius, and lower trapezius. We used paired-samples t tests to analyze the mean data for each condition. The α level was adjusted to .016 to avoid a type I error. Results: Middle trapezius %MVIC was greater during push-ups (27.01 ± 20.40%) than during use of the Cuff Link (11.49 ± 9.46%) (P  =  .001). Lower trapezius %MVIC was greater during push-ups (36.07 ± 18.99%) than during use of the Cuff Link (16.29 ± 8.64%) (P  =  .001). There was no difference in %MVIC for the serratus anterior between conditions. Conclusions: The push-up demonstrated greater middle trapezius and lower trapezius activation levels compared with the Cuff Link. However, the push-up had a high participant failure rate. Because serratus anterior activation levels were similar, the Cuff Link may be an appropriate alternative for individuals lacking the upper body strength to perform a push-up.


Author(s):  
Marcos Jusdado-García ◽  
Rubén Cuesta-Barriuso

Background. The shoulder in CrossFit should have a balance between mobility and stability. Glenohumeral internal rotation deficit and posterior shoulder stiffness are risk factors for overhead shoulder injury. Objective. To determine the effectiveness of instrument-assisted soft tissue mobilization and horizontal adduction stretch in CrossFit practitioners’ shoulders. Methods: Twenty-one regular CrossFitters were allocated to experimental (stretching with isometric contraction and instrument-assisted soft tissue mobilization) or control groups (instrument-assisted soft tissue mobilization). Each session lasted 5 min, 2 days a week, over a period of 4 weeks. Shoulder internal rotation and horizontal adduction (digital inclinometer), as well as posterior shoulder stretch perception (Park scale), were evaluated. Shapiro–Wilk test was used to analyze the distribution of the sample. Parametric Student’s t-test was used to obtain the intragroup differences. The inter- and intra-rater differences were calculated using a repeated measures analysis of variance (ANOVA). Results. Average age was 30.81 years (SD: 5.35), with an average height of 178 (SD: 7.93) cm and average weight of 82.69 (SD: 10.82) kg. Changes were found in the experimental group following intervention (p < 0.05), and when comparing baseline and follow-up assessments (p < 0.05) in all variables. Significant differences were found in the control group following intervention (p < 0.05), in right horizontal adduction and left internal rotation. When comparing the perception of internal rotation and horizontal adduction in both groups, significant differences were found. Conclusions. Instrument-assisted soft tissue mobilization can improve shoulder horizontal adduction and internal rotation. An instrument-assisted soft tissue mobilization technique yields the same results alone as those achieved in combination with post-isometric stretch with shoulder adduction.


2021 ◽  
Vol 11 (6) ◽  
pp. 2553
Author(s):  
Sang-Hyun Kim ◽  
Jong-Sup Park ◽  
Woo-Tai Jung ◽  
Jae-Yoon Kang

Various methods for strengthening existing structures have been developed owing to the increase in human and property damages caused by the deterioration of structures. Among the various reinforcing methods, the external prestressing method increases the usability and safety of a structure by directly applying tension to the weak tensile area that suffers the greatest deflection during the structure usage. The external prestressing method is advantageous in reducing cracks caused by the introduced tension and restoration of the deflection. Since the strengthening method is applied to deterioration bridges, the strengthening effect is affected by the condition of the existing structure. However, studies on the strengthening effect according to the degree of deterioration are insufficient. Therefore, the behavior according to the strengthening status was analyzed, and the strengthening effect was identified in this study by simulating the deteriorated bridge, reducing the compressive strength and reinforcement quantity, and conducting a four-point loading test. As a result of the experiment, a reinforcement effect of 215% crack load, 161% yield load, and the difference in behavior according to the reinforcement parameters were confirmed.


Sign in / Sign up

Export Citation Format

Share Document