Performance Analysis of On-Chip Communication Structures under Device Variability

Author(s):  
Faiz-ul Hassan ◽  
Wim Vanderbauwhede ◽  
Fernando Rodríguez-Salazar

On-chip communication is becoming an important bottleneck in the design and operation of high performance systems where it has to face additional challenges due to device variability. Communication structures such as tapered buffer drivers, interconnects, repeaters, and data storage elements are vulnerable to variability, which can limit the performance of the on-chip communication networks. In this regard, it becomes important to have a complete understanding of the impact that variability will have on the performance of these circuit elements in order to design high yield and reliable systems. In this paper, the authors have characterized the performance of the communication structures under the impact of random dopant fluctuation (RDF) for the future technology generations of 25, 18, and 13 nm. For accurate characterization of their performance, a Monte Carlo simulation method has been used along with predictive device models for the given technologies. Analytical models have been developed for the link failure probability of a repeater inserted interconnect which uses characterization data of all communication structures to give an accurate prediction of the link failure probability. The model has also been extended to calculate the link failure probability of a wider communication link.

Author(s):  
Faiz-ul Hassan ◽  
Wim Vanderbauwhede ◽  
Fernando Rodríguez-Salazar

On-chip communication is becoming an important bottleneck in the design and operation of high performance systems where it has to face additional challenges due to device variability. Communication structures such as tapered buffer drivers, interconnects, repeaters, and data storage elements are vulnerable to variability, which can limit the performance of the on-chip communication networks. In this regard, it becomes important to have a complete understanding of the impact that variability will have on the performance of these circuit elements in order to design high yield and reliable systems. In this paper, the authors have characterized the performance of the communication structures under the impact of random dopant fluctuation (RDF) for the future technology generations of 25, 18, and 13 nm. For accurate characterization of their performance, a Monte Carlo simulation method has been used along with predictive device models for the given technologies. Analytical models have been developed for the link failure probability of a repeater inserted interconnect which uses characterization data of all communication structures to give an accurate prediction of the link failure probability. The model has also been extended to calculate the link failure probability of a wider communication link.


Mathematics ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 101
Author(s):  
Barbara Attanasio ◽  
Andriy Mazayev ◽  
Shani du Plessis ◽  
Noélia Correia

The sixth generation (6G) of communication networks represents more of a revolution than an evolution of the previous generations, providing new directions and innovative approaches to face the network challenges of the future. A crucial aspect is to make the best use of available resources for the support of an entirely new generation of services. From this viewpoint, the Web of Things (WoT), which enables Things to become Web Things to chain, use and re-use in IoT mashups, allows interoperability among IoT platforms. At the same time, Multi-access Edge Computing (MEC) brings computing and data storage to the edge of the network, which creates the so-called distributed and collective edge intelligence. Such intelligence is created in order to deal with the huge amount of data to be collected, analyzed and processed, from real word contexts, such as smart cities, which are evolving into dynamic and networked systems of people and things. To better exploit this architecture, it is crucial to break monolithic applications into modular microservices, which can be executed independently. Here, we propose an approach based on complex network theory and two weighted and interdependent multiplex networks to address the Microservices-compliant Load Balancing (McLB) problem in MEC infrastructure. Our findings show that the multiplex network representation represents an extra dimension of analysis, allowing to capture the complexity in WoT mashup organization and its impact on the organizational aspect of MEC servers. The impact of this extracted knowledge on the cognitive organization of MEC is quantified, through the use of heuristics that are engineered to guarantee load balancing and, consequently, QoS.


Author(s):  
Saeed Delara ◽  
Kendra MacKay

Horizontal directional drilling (HDD) has become the preferred method for trenchless pipeline installations. Drilling pressures must be limited and a “no-drill zone” determined to avoid exceeding the strength of surrounding soil and rock. The currently accepted industry method of calculating hydraulic fracturing limiting pressure with application of an arbitrary safety factor contains several assumptions that are often not applicable to specific ground conditions. There is also no standard procedure for safety factor determination, resulting in detrimental impacts on drilling operations. This paper provides an analysis of the standard methods and proposes two alternative analytical models to more accurately determine the hydraulic fracture point and acceptable drilling pressure. These alternative methods provide greater understanding of the interaction between the drilling pressures and the surrounding ground strength properties. This allows for more accurate determination of horizontal directional drilling limitations. A comparison is presented to determine the differences in characteristics and assumptions for each model. The impact of specific soil properties and factors is investigated by means of a sensitivity analysis to determine the most critical soil information for each model.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Alexander Pralow ◽  
Alexander Nikolay ◽  
Arnaud Leon ◽  
Yvonne Genzel ◽  
Erdmann Rapp ◽  
...  

AbstractHere, we present for the first time, a site-specific N-glycosylation analysis of proteins from a Brazilian Zika virus (ZIKV) strain. The virus was propagated with high yield in an embryo-derived stem cell line (EB66, Valneva SE), and concentrated by g-force step-gradient centrifugation. Subsequently, the sample was proteolytically digested with different enzymes, measured via a LC–MS/MS-based workflow, and analyzed in a semi-automated way using the in-house developed glyXtoolMS software. The viral non-structural protein 1 (NS1) was glycosylated exclusively with high-mannose structures on both potential N-glycosylation sites. In case of the viral envelope (E) protein, no specific N-glycans could be identified with this method. Nevertheless, N-glycosylation could be proved by enzymatic de-N-glycosylation with PNGase F, resulting in a strong MS-signal of the former glycopeptide with deamidated asparagine at the potential N-glycosylation site N444. This confirmed that this site of the ZIKV E protein is highly N-glycosylated but with very high micro-heterogeneity. Our study clearly demonstrates the progress made towards site-specific N-glycosylation analysis of viral proteins, i.e. for Brazilian ZIKV. It allows to better characterize viral isolates, and to monitor glycosylation of major antigens. The method established can be applied for detailed studies regarding the impact of protein glycosylation on antigenicity and human pathogenicity of many viruses including influenza virus, HIV and corona virus.


Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1387
Author(s):  
Oswaldo Sebastian Peñaherrera-Pulla ◽  
Carlos Baena ◽  
Sergio Fortes ◽  
Eduardo Baena ◽  
Raquel Barco

Cloud Gaming is a cutting-edge paradigm in the video game provision where the graphics rendering and logic are computed in the cloud. This allows a user’s thin client systems with much more limited capabilities to offer a comparable experience with traditional local and online gaming but using reduced hardware requirements. In contrast, this approach stresses the communication networks between the client and the cloud. In this context, it is necessary to know how to configure the network in order to provide service with the best quality. To that end, the present work defines a novel framework for Cloud Gaming performance evaluation. This system is implemented in a real testbed and evaluates the Cloud Gaming approach for different transport networks (Ethernet, WiFi, and LTE (Long Term Evolution)) and scenarios, automating the acquisition of the gaming metrics. From this, the impact on the overall gaming experience is analyzed identifying the main parameters involved in its performance. Hence, the future lines for Cloud Gaming QoE-based (Quality of Experience) optimization are established, this way being of configuration, a trendy paradigm in the new-generation networks, such as 4G and 5G (Fourth and Fifth Generation of Mobile Networks).


2020 ◽  
Vol 6 ◽  
pp. 205520762096835
Author(s):  
C Blease ◽  
C Locher ◽  
M Leon-Carlyle ◽  
M Doraiswamy

Background The potential for machine learning to disrupt the medical profession is the subject of ongoing debate within biomedical informatics. Objective This study aimed to explore psychiatrists’ opinions about the potential impact innovations in artificial intelligence and machine learning on psychiatric practice Methods In Spring 2019, we conducted a web-based survey of 791 psychiatrists from 22 countries worldwide. The survey measured opinions about the likelihood future technology would fully replace physicians in performing ten key psychiatric tasks. This study involved qualitative descriptive analysis of written responses (“comments”) to three open-ended questions in the survey. Results Comments were classified into four major categories in relation to the impact of future technology on: (1) patient-psychiatrist interactions; (2) the quality of patient medical care; (3) the profession of psychiatry; and (4) health systems. Overwhelmingly, psychiatrists were skeptical that technology could replace human empathy. Many predicted that ‘man and machine’ would increasingly collaborate in undertaking clinical decisions, with mixed opinions about the benefits and harms of such an arrangement. Participants were optimistic that technology might improve efficiencies and access to care, and reduce costs. Ethical and regulatory considerations received limited attention. Conclusions This study presents timely information on psychiatrists’ views about the scope of artificial intelligence and machine learning on psychiatric practice. Psychiatrists expressed divergent views about the value and impact of future technology with worrying omissions about practice guidelines, and ethical and regulatory issues.


2006 ◽  
Vol 970 ◽  
Author(s):  
Manabu Bonkohara ◽  
Makoto Motoyoshi ◽  
Kazutoshi Kamibayashi ◽  
Mitsumasa Koyanagi

ABSTRACTRecently the development of three dimensional LSI (3D-LSI) has been accelerated and its stage has changed from the research level or limited production level to the investigation level with a view to mass production. This paper describes the current and the future 3D-LSI technologies which we have considered and imagined. The current technology is taken our Chip Size Package (CSP) for sensor device, for instance. In the future technology, there are the five key technologies are described. And considering con and pro of the current 3D LSI stacked approach, such as CoC (Chip on Chip), CoW (Chip on Wafer) and WoW (Wafer on Wafer), We confirmed that CoW combined with Super-Smart-Stack (SSS™) technology will shorten the process time per chip at the same level as WoW approach and is effective to minimize process cost.


2016 ◽  
Vol 7 (2) ◽  
pp. 86-92 ◽  
Author(s):  
Józef Kuczmaszewski ◽  
Ireneusz Zagórski ◽  
Piotr Zgórniak

Abstract This paper presents an overview of the state of knowledge on temperature measurement in the cutting area during magnesium alloy milling. Additionally, results of own research on chip temperature measurement during dry milling of magnesium alloys are included. Tested magnesium alloys are frequently used for manufacturing elements applied in the aerospace industry. The impact of technological parameters on the maximum chip temperature during milling is also analysed. This study is relevant due to the risk of chip ignition during the machining process.


Photonics ◽  
2021 ◽  
Vol 8 (4) ◽  
pp. 108
Author(s):  
Dong Qin ◽  
Yuhao Wang ◽  
Tianqing Zhou

This paper investigates the impact of cooperative spectrum sharing policy on the performance of hybrid radio frequency and free space optical wireless communication networks, where primary users and secondary users develop a band of the same spectrum resource. The radio frequency links obey Nakagami-m distribution with arbitrary fading parameter m, while the free space optical link follows gamma-gamma distributed atmospheric turbulence with nonzero pointing error. Because the secondary users access the spectrum band without payment, their behavior needs to be restricted. Specifically, the power of the secondary users is dominated by the tolerable threshold of the primary users. Considering both heterodyne and intensity modulation/direct detection strategies in optical receiver, the performance of optical relaying networks is completely different from that of traditional networks. With the help of bivariable Fox’s H function, new expressions for cumulative distribution function of equivalent signal to noise ratio at destination, probability density function, outage probability, ergodic capacity and symbol error probability are built in closed forms.


2021 ◽  
Author(s):  
Daniel de Oliveira Costa ◽  
Julia Araújo Perim ◽  
Bruno Guedes Camargo ◽  
Joel Sena Sales Junior ◽  
Antonio Carlos Fernandes ◽  
...  

Abstract Slamming events due to wave impact on the underside of decks might lead to severe and potentially harmful local and/or global loads in offshore structures. The strong nonlinearities during the impact require a robust method for accessing the loads and hinder the use of analytical models. The use of computation fluid dynamics (CFD) is an interesting alternative to estimate the impact loads, but validation through experimental data is still essential. The present work focuses on a flat-bottomed model fixed over the mean free surface level submitted to regular incoming waves. The proposal is to reproduce previous studies through CFD and model tests in a different reduced scale to provide extra validation and to identify possible non-potential scale effects such as air compressibility. Numerical simulations are performed in both experiments’ scales. The numerical analysis is performed with a marine dedicated flow solver, FINE™/Marine from NUMECA, which features an unsteady Reynolds-averaged Navier-Stokes (URANS) solver and a finite volume method to build spatial discretization. The multiphase flow is represented through the Volume of Fluid (VOF) method for incompressible and nonmiscible fluids. The new model tests were performed at the wave channel of the Laboratory of Waves and Currents (LOC/COPPE – UFRJ), at the Federal University of Rio de Janeiro.


Sign in / Sign up

Export Citation Format

Share Document