Microbe Associated Phytoremediation Technology for Management of Oil Sludge

Author(s):  
Anil Kumar ◽  
Monika Chandrabhan Dhote

Environmental contamination due to petroleum compounds is a serious global issue. Oil /petroleum refineries produce huge amount of oil sludge during drilling, storage, transport, refining which spoil soil and ground water resources. Such activities release different compounds viz. alkane, mono- polyaromatic hydrocarbons (PAH), asphaltene, resins and heavy metals. Due to physico-chemical properties, PAHs are one of most targeted compounds as they are highly persistent, carcinogenic, and have mutagenic effects on ecosystem. Such problems of PAHs drag researcher's attention to find some reliable and cost effective solution for oil sludge disposal management. Since last few decades, extensive research work has been carried out on various methods for treatment of oil sludge. In recent years, microbial assisted phytoremediation treatment technologies are being studied since these are reliable and cost effective for field applications. Here, we have discussed about combined eco-friendly technology of plant and microbe(s) to treat oil sludge for its better management.

2021 ◽  
Author(s):  
Luke D Geoffrion ◽  
David Medina Cruz ◽  
Matthew Kusper ◽  
Sakr Elsaidi ◽  
Fumiya Watanabe ◽  
...  

Bismuth oxide is an important bismuth compound having applications in electronics, photo-catalysis and medicine. At the nanoscale, bismuth oxide experiences a variety of new physico-chemical properties because of its increased...


Author(s):  
Shushank Sharma

The oral route is the most convenient route of administration for various drugs. It is viewed as the most convenient, most secure, and economical route for patients. Fast disintegrating tablets are popular these days as they disintegrate in the mouth within a few seconds without the use of water. The burdens of regularly used medications in pediatric and geriatric patients have been overwhelmed by quick-dissolving tablets. Natural superdisintegrants have been used for fast-dissolving tablets because they are biodegradable, chemically inert, non-harmful, more affordable, and generally accessible. Natural polymer improves the properties of the tablet as it is commonly used as diluents and binders. Natural super disintegrants decrease the release time and give healthful results to the patients. Most polymers are obtained from nature, they are cost-effective, non-toxic, and non-irritants. Disintegration is the most important step for releasing the drug from the tablet matrix to decrease the disintegration time. In this, drug and polymers come in contact with water, it swells, hydrate, and react chemically to release the drug in the mouth and gastrointestinal tract. Superdisintegrants are those substances that encourage the quick breaking down with a lesser amount contrasted with disintegrants. The quick disintegrants tablets are set up by utilizing suitable polymers which rely on the Physico-chemical properties of drugs and excipients, for example, drug and polymer compatibility, hardness and thickness of tablet, nature of drug and excipients, PH of drug and release parameters of drug formulation. Superdisintegrants are the vehicles added to tablet formulation to advance the breaking of tablets and capsules into small microparticles in aqueous media resulting in to increase in the surface area and promote quick drug release. The disintegrants have a significant capacity to oppose the efficacy of tablet binders and compression forces to form the tablet. Commonly there are three methods to incorporate disintegrants into the tablet: A. Inner addition, B. External expansion, C. Internal, and external addition. Most of the regularly based tablets are those expected to be swallow, disintegrate and release medicaments in the gastrointestinal tract but over a while tablets are manufactured to deliver medicaments in the mouth and gastrointestinal tract within few seconds of swallowing. It has been demonstrated that characteristic polymers are more effective than synthetic polymers. Some research is going to develop safe and effective medication with super disintegrating agents that can be dissolved rapidly to treat the disease.


Biotechnology ◽  
2019 ◽  
pp. 1910-1943
Author(s):  
Veena Gayathri Krishnaswamy

Environmental pollution has been an irrefutable fact of life for many centuries; but it has become a real problem, since the start of the industrial revolution. Discharge of these toxic compounds without treatment results in serious health risks to humans and the marine ecosystem. Several physical, chemical and biological methods have been employed for the remediation of the phenolics. Bioremediation is identified as the most efficient, cost effective and eco-friendly ways for treatment of phenolic compounds. This article is a comprehensive review on the sources of phenolic compounds, their hazards, and their fate once released into the environment; the treatment technologies employed and bioremediation of these compounds using both non-extremophlic and extremophilic organisms. The review, throws light on the enzymes involved in the remediation of phenolic compounds, highlights the importance of extremophilic organisms and biological treatment of phenol containing industrial wastewaters. Such comprehensive information on the research work performed for the remediation of phenolic compounds provide ways to explore the role played by micro organisms in the remediation of phenolic compounds, which could be applied in the remediation of phenol /contaminated sites even under extreme conditions.


Author(s):  
Veena Gayathri Krishnaswamy

Environmental pollution has been an irrefutable fact of life for many centuries; but it has become a real problem, since the start of the industrial revolution. Discharge of these toxic compounds without treatment results in serious health risks to humans and the marine ecosystem. Several physical, chemical and biological methods have been employed for the remediation of the phenolics. Bioremediation is identified as the most efficient, cost effective and eco-friendly ways for treatment of phenolic compounds. This article is a comprehensive review on the sources of phenolic compounds, their hazards, and their fate once released into the environment; the treatment technologies employed and bioremediation of these compounds using both non-extremophlic and extremophilic organisms. The review, throws light on the enzymes involved in the remediation of phenolic compounds, highlights the importance of extremophilic organisms and biological treatment of phenol containing industrial wastewaters. Such comprehensive information on the research work performed for the remediation of phenolic compounds provide ways to explore the role played by micro organisms in the remediation of phenolic compounds, which could be applied in the remediation of phenol /contaminated sites even under extreme conditions.


Author(s):  
Shushank Sharma ◽  
Sikha Chauhan

The oral route is the most convenient route of administration for various drugs. It is viewed as the most convenient, most secure, and economical route for patients. Fast disintegrating tablets are popular these days as they disintegrate in the mouth within a few seconds without the use of water. The burdens of regularly used medications in pediatric and geriatric patients have been overwhelmed by quick-dissolving tablets. Natural superdisintegrants have been used for fast-dissolving tablets because they are biodegradable, chemically inert, non-harmful, more affordable, and generally accessible. Natural polymer improves the properties of the tablet as it is commonly used as diluents and binders. Natural super disintegrants decrease the release time and give healthful results to the patients. Most polymers are obtained from nature, they are cost-effective, non-toxic, and non-irritants. Disintegration is the most important step for releasing the drug from the tablet matrix to decrease the disintegration time. In this, drug and polymers come in contact with water, it swells, hydrate, and react chemically to release the drug in the mouth and gastrointestinal tract. Superdisintegrants are those substances that encourage the quick breaking down with a lesser amount contrasted with disintegrants. The quick disintegrants tablets are set up by utilizing suitable polymers which rely on the Physico-Chemical properties of drugs and excipients, for example, drug and polymer compatibility, hardness and thickness of tablet, nature of drug and excipients, PH of drug and release parameters of drug formulation. Superdisintegrants are the vehicles added to tablet formulation to advance the breaking of tablets and capsules into small microparticles in aqueous media resulting in to increase in the surface area and promote quick drug release. The disintegrants have a significant capacity to oppose the efficacy of tablet binders and compression forces to form the tablet. Commonly there are three methods to incorporate disintegrants into the tablet: A. Inner addition, B. External expansion, C. Internal, and external addition. Most of the regularly based tablets are those expected to be swallow, disintegrate and release medicaments in the gastrointestinal tract but over a while tablets are manufactured to deliver medicaments in the mouth and gastrointestinal tract within few seconds of swallowing. It has been demonstrated that characteristic polymers are more effective than synthetic polymers. Some research is going to develop safe and effective medication with super disintegrating agents that can be dissolved rapidly to treat the disease.


Materials ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1622
Author(s):  
Abraham A. Abe ◽  
Cesare Oliviero Rossi ◽  
Paolino Caputo ◽  
Maria Penelope De Santo ◽  
Nicolas Godbert ◽  
...  

Over the years, the need for the synthesis of biodegradable materials has facilitated the drift of the asphalt industry towards eco-sustainable and cost-effective production of road pavements. The principal additives in the asphalt industry to improve the performance of road pavements and increase its lifespan are majorly rheological modifiers, adhesion promoters and anti-oxidant agents. Rheological modifiers increase physico-chemical properties such as transition temperature of asphalt binder (bitumen), adhesion promoters increase the affinity between binder and stone aggregates while anti-oxidant agents reduce the effects of oxidation caused by exposure to air, water and other natural elements during the production of asphalt pavements. In this study, we tested the effectiveness of a food grade bio-additive on these three aforementioned properties. We also sought to hypothesize the mechanisms by which the additive confers these desired features on bitumen. We present this study to evaluate the effects of turmeric, a food-based additive, on bitumen. The study was conducted through dynamic shear rheology (DSR), atomic force microscopy, scanning electron microscopy (SEM) and boiling test analysis.


2021 ◽  
Vol 1 (1) ◽  
pp. 22-29
Author(s):  
Siti Nur Amalina Mohamad Sukri ◽  
Kamyar Shameli ◽  
Teow Sin-Yeang ◽  
Nur Afini Ismail

Fungal infections are affecting millions of people in the world every year. Severity of infections range from superficial mycoses to more chronic systemic mycoses. As more fungi species evolve, emergence of drug resistant strains is becoming a serious concern to the public health. There is now less number of effective antifungal drugs available in the market for treatment of invasive fungal infections. In an effort to combat this escalating issue, the use of nanoparticles as antifungal agent has been proposed and explored. Versatility of nanoparticles and its unique physico-chemical properties are proven beneficial for developing new therapeutic methods in treatment of fungal infections. Nanoparticles produced from biological synthesis have attracted keen interests from researchers, as they are more environmentally friendly, sustainable, cost-effective, and biocompatible. This mini review will provide an insight on the current antifungal studies and discuss the theory behind mechanism of actions of nanoparticles.


2021 ◽  
Author(s):  
amina ghedjemis ◽  
Riad ayech ◽  
Ali BENOUADAH

Abstract The recovery of agro-food waste is at the heart of the challenges of the 21st century, in this context that this research work comes. A biomaterial is prepared from a significant resource such as dromedary bone and bovine bone by heat treatment at different temperatures and characterized by physico-chemical techniques in order to have the effect of bone type on the physico-chemical properties of hydroxyapatite. The results of FTIR and DRX show the removal of all organic matter and the production of pure hydroxyapatite without any additional phase for both bone types. Analyzes by SEM and laser particle size analyzer show that the particle size of hydroxyapatite is increased with increasing temperature. From the results of XRF, bone type is a direct effect on the concentration of hydroxyapatite compounds in hydroxyapatite prepared from dromedary bone compared to hydroxyapatite prepared from bovine bone.


2021 ◽  
Vol 3 (2) ◽  
pp. 175-182
Author(s):  
Odimegwu Vitus Chinonso ◽  
Weli Vincent Ezikornwor ◽  
Nwagbara Moses Okemini

This study evaluated the growth responses of C3 and C4 crops to soil physico-chemical properties in Rivers State. The C3 crop refers to Pumpkin and Cucumber while C4 crop refers to Amaranthus in this study. The research work made use of three crops (Pumpkin, Cucumber and Amaranthus in some selected sites in Rivers State and the study was carried out both in the dry and wet seasons. Soil samples were collected from both topsoil (0-15cm) and subsoil (15-30cm). The crops and soil samples were taken to the laboratory for further analysis. Mean values and standard deviations were used to describe the analysis while analysis of variance (ANOVA), Duncan, and Kruskal Wallis were used to test the hypotheses. All analyses were carried out using Statistical Package for Social Sciences (SPSS) 21.1 Version. Findings showed that sand content in Oyigbo had the highest in the topsoil at 95.37% while Etche had highest in silt content at 1.87%. For the subsoil, Oyigbo also had the highest sand content at 93.30% while Ikwerre had the highest clay content at 6.63% in subsoil. For chemical properties of soil, total organic carbon and magnesium were highest in Oyigbo at 1.91% and 24.00% respectively for topsoil while for subsoil potassium was highest in Ikwerre at 8.30%. It was also discovered C3 and C4 crops planted in Oyigbo, Etche and Ikwerre varied from the nutrients standards recommended by USDA (2014). The following nutrients and minerals were considered: energy, carbohydrates, protein, total fat, cholesterol, dietary fiber, vitamins, folates, niacin, pantogenic acid, pyridoxine, riboflavin, thiamin, Electrolytes, sodium, potassium, calcium, iron, magnesium, manganese phosphorus, and zinc. For standards recommended by (USDA 2014), only energy, iron, zinc, manganese, vitamin E, riboflavin, pyridoxine, niacin and pantothenic acid at Oyigbo met the standards, also Riboflavin and iron at Ikwerre met the (USDA 2014) standards while only folates at Etche met the (USDA 2014) standards. The study recommended that the soil nutrients and pH should be improved across the three locations and the acidic nature of both topsoil and subsoil should be improved by neutralizing the soil with lime.


Author(s):  
P.U. Singare ◽  
S.S. Dhabarde

The paper deals with monitoring of pollution arising due to oil and surfactants manufacturing industries located along the Dombivali industrial belt of Mumbai, India. The study was carried for the period of one year from June, 2012 to May, 2013 to study the level of toxic heavy metals and the physico-chemical properties of waste water effluents discharged from the above industries. The maximum concentration of majority of heavy metals like Cu, Ni, Cr, Pb and Fe were recorded as 13.48, 3.90, 13.30, 1.75 and 15.89 ppm respectively, which were above the tolerable limit set for inland surface water. The maximum pH and conductivity values of the industrial waste water effluent were recorded as 10.05 and 27800 µmhos/cm respectively. The majority of physico-chemical parameters like chloride, cyanide, phosphate and total solid content were found to be maximum in the month of March having the respective values of 2340, 0.09, 3 5.2 and 8755 ppm. The effluent samples collected in the month of May was found to have low DO content of 3.33 ppm and high BOD content of 643 ppm. The alkalinity and COD values were reported to be maximum of 1988 and 4410 ppm respectively in the month of February. The hardness and salinity content was reported maximum of 131 and 5.76 ppm during the month of December and June respectively. The results of present research work indicates that time has come to move towards ecosystem specific discharge standards to maintain the health and productivity of natural resources on which the majority of Indians are dependent


Sign in / Sign up

Export Citation Format

Share Document