Poly (Lactic Acid) Generated for Advanced Materials

Author(s):  
Pranut Potiyaraj

The consumption of plastic products from petrochemical feedstock has increased sharply resulting in plastic waste problems while raw materials from fossil fuels tend to decrease rapidly. Researchers and the plastic industry have since proposed a sustainable solution through the development of bioplastics. Ideally, bioplastics which are synthesized from renewable bioresources normally render biodegradability in appropriate conditions. Polyester, one of the most diversely used synthetic polymers today, is an ideal choice for biodegradable polymers due to the relative ease of breaking ester linkages. Poly(lactic acid) or polylactide or PLA which is a thermoplastic polyester with many advantageous properties, for instance, environmentally friendly, biocompatibility, processability, and high chemical resistance is now available in the plastic market as a promising bioplastics. However, the cost of PLA is still much higher than that of general commodity plastics. In order to make PLA commercially competitive, advanced and innovative applications should thus be explored. In this chapter, technological background of PLA production as well as its economic situation is firstly reviewed. Then, the enhancement of PLA properties to suit advanced applications is illustrated. Some polymers used for blending with PLA along with some fillers utilized for the production of PLA composites are described. The chapter concludes with the degradation mechanism of PLA and the standard test methods.

Polymers ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 381
Author(s):  
Alessandro Nanni ◽  
Mariafederica Parisi ◽  
Martino Colonna

The plastic industry is today facing a green revolution; however, biopolymers, produced in low amounts, expensive, and food competitive do not represent an efficient solution. The use of wine waste as second-generation feedstock for the synthesis of polymer building blocks or as reinforcing fillers could represent a solution to reduce biopolymer costs and to boost the biopolymer presence in the market. The present critical review reports the state of the art of the scientific studies concerning the use of wine by-products as substrate for the synthesis of polymer building blocks and as reinforcing fillers for polymers. The review has been mainly focused on the most used bio-based and biodegradable polymers present in the market (i.e., poly(lactic acid), poly(butylene succinate), and poly(hydroxyalkanoates)). The results present in the literature have been reviewed and elaborated in order to suggest new possibilities of development based on the chemical and physical characteristics of wine by-products.


2021 ◽  
pp. 002199832110082
Author(s):  
Azzeddine Gharsallah ◽  
Abdelheq Layachi ◽  
Ali Louaer ◽  
Hamid Satha

This paper reports the effect of lignocellulosic flour and talc powder on the thermal degradation behavior of poly (lactic acid) (PLA) by thermogravimetric analysis (TGA). Lignocellulosic flour was obtained by grinding Opuntia Ficus Indica cladodes. PLA/talc/ Opuntia Ficus Indica flour (OFI-F) biocomposites were prepared by melt processing and characterized using Wide-angle X-ray scattering (WAXS) and Scanning Electron Microscope (SEM). The thermal degradation of neat PLA and its biocomposites can be identified quantitatively by solid-state kinetics models. Thermal degradation results on biocomposites compared to neat PLA show that talc particles at 10 wt % into the PLA matrix have a minor impact on the thermal stability of biocomposites. Loading OFI-F and Talc/OFI-F mixture into the PLA matrix results in a decrease in the maximum degradation temperature, which means that the biocomposites have lower thermal stability. The activation energies (Ea) calculated by the Flynn Wall Ozawa (FWO) and Kissinger Akahira Sunose (KAS) model-free approaches and by model-fitting (Kissinger method and Coats-Redfern method) are in good agreement with one another. In addition, in this work, the degradation mechanism of biocomposites is proposed using Coats-Redfern and Criado methods.


Processes ◽  
2019 ◽  
Vol 7 (10) ◽  
pp. 667 ◽  
Author(s):  
Avraam Roussos ◽  
Nikiforos Misailidis ◽  
Alexandros Koulouris ◽  
Francesco Zimbardi ◽  
Demetri Petrides

Renewable liquid biofuels for transportation have recently attracted enormous global attention due to their potential to provide a sustainable alternative to fossil fuels. In recent years, the attention has shifted from first-generation bioethanol to the production of higher molecular weight alcohols, such as biobutanol, from cellulosic feedstocks. The economic feasibility of such processes depends on several parameters such as the cost of raw materials, the fermentation performance and the energy demand for the pretreatment of biomass and downstream processing. In this work, two conceptual process scenarios for isobutanol production, one with and one without integrated product removal from the fermentor by vacuum stripping, were developed and evaluated using SuperPro Designer®. In agreement with previous publications, it was concluded that the fermentation titer is a crucial parameter for the economic competitiveness of the process as it is closely related to the energy requirements for product purification. In the first scenario where the product titer was 22 g/L, the energy demand for downstream processing was 15.8 MJ/L isobutanol and the unit production cost of isobutanol was $2.24/L. The integrated product removal by vacuum stripping implemented in the second scenario was assumed to improve the isobutanol titer to 50 g/L. In this case, the energy demand for the product removal (electricity) and downstream processing were 1.8 MJ/L isobutanol and 10 MJ/L isobutanol, respectively, and the unit production cost was reduced to $1.42/L. The uncertainty associated with the choice of modeling and economic parameters was investigated by Monte Carlo simulation sensitivity analysis.


Biomimetics ◽  
2020 ◽  
Vol 5 (4) ◽  
pp. 61
Author(s):  
Thevu Vu ◽  
Peyman Nikaeen ◽  
William Chirdon ◽  
Ahmed Khattab ◽  
Dilip Depan

To understand the interrelationship between the microstructure and degradation behavior of poly(lactic acid) (PLA), single-walled carbon nanotubes (CNTs) were introduced into PLA as nucleating agents. The degradation behavior of PLA-CNT nanocomposites was examined under accelerated weathering conditions with exposure to UV light, heat, and moisture. The degradation mechanism proceeded via the Norrish type II mechanism of carbonyl polyester. Differential scanning calorimetry (DSC) studies showed an increase in glass transition temperature, melting temperature, and crystallinity as a result of the degradation. However, pure PLA showed higher degradation as evidenced by increased crystallinity, lower onset decomposition temperature, embrittlement, and a higher number of micro-voids which became broader and deeper during degradation. In the PLA-CNT nanocomposites, CNTs created a tortuous pathway which inhibits the penetration of water molecules deeper into the polymer matrix, making PLA thermally stable by increasing the initial temperature of mass loss. CNTs appear to retard PLA degradation by impeding mass transfer. Our study will facilitate designing environmentally friendly packaging materials that display greater resistance to degradation in the presence of moisture and UV light.


2014 ◽  
Vol 67 (4) ◽  
pp. 578 ◽  
Author(s):  
Katrin-Stephanie Tücking ◽  
Stephan Handschuh-Wang ◽  
Holger Schönherr

Stimuli-responsive polymersomes that are selectively cleaved by enzymes of pathogenic bacteria are herein reported. The local disruption of the polyester wall in poly(ethylene glycol)-block-poly(lactic acid) (PEG-b-PLA) polymersomes filled with reporter dyes owing to enzymatic degradation by proteinase K was monitored by fluorescence lifetime imaging microscopy. Capsule opening occurred on timescales of minutes to hours, leading to the release of the dye, followed by a slow capsule disintegration, and finally cleavage into monomeric lactic acid over several weeks. These nanocontainers represent a promising element in novel theranostic systems for potential application in advanced wound dressings.


1969 ◽  
Vol 16 (3) ◽  
Author(s):  
Anuj K Chandel ◽  
Om V Singh ◽  
Gajula Chandrasekhar ◽  
Linga Venkateswar Rao ◽  
Mangamoori Lakshmi Narasu

The imposition of ethanol derived from biomass for blending in gasoline would make countries less dependent on current petroleum sources, which would save foreign exchange reserves, improve rural economies and provide job opportunities in a clean and safe environment. The key drivers for successful commercial ethanol production are cheap raw materials, economic pretreatment technologies, in-house cellulase production with high and efficient titers, high ethanol fermentation rates, downstream recovery of ethanol and maximum by-products utilization. Furthermore, recent developments in engineering of biomass for increased biomass, down-regulation of lignin synthesis, improved cellulase titers and re-engineering of cellulases, and process integration of the steps involved have increased the possibility of cheap bioethanol production that competes with the price of petroleum. Recently, many companies have come forward globally for bioethanol production on a large scale. It is very clear now that bioethanol will be available at the price of fossil fuels by 2010. This article intends to provide insight and perspectives on the important recent developments in bioethanol research, the commercialization status of bioethanol production, the step-wise cost incurred in the process involved, and the possible innovations that can be utilized to reduce the cost of ethanol production.


RSC Advances ◽  
2017 ◽  
Vol 7 (73) ◽  
pp. 46183-46194 ◽  
Author(s):  
Jia Yang ◽  
Hongwei Pan ◽  
Xin Li ◽  
Shulin Sun ◽  
Huiliang Zhang ◽  
...  

PPCU was prepared by using PPC and polyols as the raw materials and diphenyl-methane-diisocyanate (MDI) as the extender chain. The impact strength and elongation at break of PLA were remarkably enhanced by blending with PPCU.


Polymers ◽  
2019 ◽  
Vol 11 (12) ◽  
pp. 1963 ◽  
Author(s):  
Marcin Borowicz ◽  
Joanna Paciorek-Sadowska ◽  
Marek Isbrandt ◽  
Łukasz Grzybowski ◽  
Bogusław Czupryński

The article concerns the use of glycerolysis reaction as an alternative method of processing post-production and post-consumer waste from poly(lactic acid) (PLA). Management of waste is a very important issue from an environmental protection and economic point of view. Extending the “life cycle” of PLA is extremely important because it allows to make the most of this material. It also limits economic losses resulting from its disposal in the biodegradation process at the same time. This paper presents a method of glycerolysis of poly(lactic acid) waste using various amounts of anhydrous glycerol (mass ratio from 0.3 to 0.5 parts by weight of glycerol per 1.0 part by weight of PLA). This process was also carried out for pure, unmodified PLA Ingeo® (from NatureWorks) to compare the obtained results. The six liquid oligomeric polyhydric alcohols were obtained as a result of the synthesis. Then, they were subjected to physicochemical tests such as determination of color, smell, density, viscosity, and pH. In addition, the obtained raw materials were subjected to analytical tests such as determination of the hydroxyl value, acid value, water content, and elemental composition. The average molecular weights and dispersity were also tested by gel permeation chromatography (GPC). The assumed chemical structure of the obtained compounds was confirmed by spectroscopic methods such as FTIR, 1H NMR, 13C NMR. Glycerolysis products were also subjected to differential scanning calorimetry (DSC) to determine thermal parameters. The obtained research results have allowed the precise characterization of newly obtained products and determination of their suitability, e.g., for the synthesis of polyurethane (PUR) materials.


2018 ◽  
Vol 53 (6) ◽  
pp. 783-797 ◽  
Author(s):  
Daniele Battegazzore ◽  
Amir Noori ◽  
Alberto Frache

The paper describes the production and the mechanical characteristics of composites made completely of renewable raw materials. Several wastes or by-products from agro-industrial production namely hemp hurd, alfalfa, and grape stem were analyzed with respect to their thermal stability, morphological, and chemical composition in an attempt to validate their use in composites. Such natural particle fillers were used in the range of 10–50 wt% in combination with poly(lactic acid) by melt blending to obtain fully bio-based composites. These fillers were responsible for a noteworthy increase in the storage modulus. Furthermore, two micromechanical models (Voigt and Halpin–Tsai) were used to mathematically fitted the experimental data, and then the unknown moduli were extrapolated and compared with other natural fillers. Finally, the flexural strength of the bio-composites and the adhesion evaluation by exploiting Pukanszky’s model were carried out. As a result, the hemp hurd in the form of chips was the best investigated filler, which showed the highest calculated modulus of 10.5 GPa (Voigt) and the best filler–matrix interaction with “B” (Pukanszky’s coefficient) of 2.10. This information can be useful when comparison and selection of a suitable filler among the natural fillers are required.


2018 ◽  
Vol 782 ◽  
pp. 195-200 ◽  
Author(s):  
Ipek Karacan ◽  
Joshua Chou ◽  
Besim Ben-Nissan ◽  
Innocent J. Macha ◽  
Arion Juritza ◽  
...  

Surface modifications have been progressively applied in order to improve the mechanical, biological and chemical properties of metallic dental and orthopedic implants. Therefore, the novel and multifunctional biocomposites coating matrices, which also consist of local and targeted drug delivery systems, are the most recent applications in the medical field. In this study, gentamicin antibiotic containing HAp bioceramics were utilized in a biodegradable poly-lactic acid thin film matrix which was applied to Ti6Al4V metallic implant surfaces. nanoindentation and scratch test methods were applied. It was observed that, bonding between coating and the substrate is strong enough to be used in implant applications. Additionally, it was observed that the hardness and young modulus values of uncoated Ti6Al4V disc which were 4.3 and 125.2 GPa, respectively. However, under the same testing conditions, it was also observed that the H values (0.6-0.8GPa) and the E (50-60 GPa) values of PLA-HAp biocomposite coated samples are slightly higher than the H values (0.4-0.6 GPa) and the E values (40-50GPa) of only PLA coated sample.


Sign in / Sign up

Export Citation Format

Share Document