Spam as a Symptom of Electronic Communication Technologies that Ignore Social Requirements

2009 ◽  
pp. 1464-1473
Author(s):  
Brian Whitworth

Spam, undesired and usually unsolicited e-mail, has been a growing problem for some time. A 2003 Sunbelt Software poll found spam (or junk mail) has surpassed viruses as the number-one unwanted network intrusion (Townsend & Taphouse, 2003). Time magazine reports that for major e-mail providers, 40 to 70% of all incoming mail is deleted at the server (Taylor, 2003), and AOL reports that 80% of its inbound e-mail, 1.5 to 1.9 billion messages a day, is spam the company blocks. Spam is the e-mail consumer’s number-one complaint (Davidson, 2003). Despite Internet service provider (ISP) filtering, up to 30% of in-box messages are spam. While each of us may only take seconds (or minutes) to deal with such mail, over billions of cases the losses are significant. A Ferris Research report estimates spam 2003 costs for U.S. companies at $10 billion (Bekker, 2003). While improved filters send more spam to trash cans, ever more spam is sent, consuming an increasing proportion of network resources. Users shielded behind spam filters may notice little change, but the Internet transmitted-spam percentage has been steadily growing. It was 8% in 2001, grew from 20% to 40% in 6 months over 2002 to 2003, and continues to grow (Weiss, 2003). In May 2003, the amount of spam e-mail exceeded nonspam for the first time, that is, over 50% of transmitted e-mail is now spam (Vaughan-Nichols, 2003). Informal estimates for 2004 are over 60%, with some as high as 80%. In practical terms, an ISP needing one server for customers must buy another just for spam almost no one reads. This cost passes on to users in increased connection fees. Pretransmission filtering could reduce this waste, but creates another problem: spam false positives, that is, valid e-mail filtered as spam. If you accidentally use spam words, like enlarge, your e-mail may be filtered. Currently, receivers can recover false rejects from their spam filter’s quarantine area, but filtering before transmission means the message never arrives at all, so neither sender nor receiver knows there is an error. Imagine if the postal mail system shredded unwanted mail and lost mail in the process. People could lose confidence that the mail will get through. If a communication environment cannot be trusted, confidence in it can collapse. Electronic communication systems sit on the horns of a dilemma. Reducing spam increases delivery failure rate, while guaranteeing delivery increases spam rates. Either way, by social failure of confidence or technical failure of capability, spam threatens the transmission system itself (Weinstein, 2003). As the percentage of transmitted spam increases, both problems increase. If spam were 99% of sent mail, a small false-positive percentage becomes a much higher percentage of valid e-mail that failed. The growing spam problem is recognized ambivalently by IT writers who espouse new Bayesian spam filters but note, “The problem with spam is that it is almost impossible to define” (Vaughan-Nichols, 2003, p. 142), or who advocate legal solutions but say none have worked so far. The technical community seems to be in a state of denial regarding spam. Despite some successes, transmitted spam is increasing. Moral outrage, spam blockers, spamming the spammers, black and white lists, and legal responses have slowed but not stopped it. Spam blockers, by hiding the problem from users, may be making it worse, as a Band-Aid covers but does not cure a systemic sore. Asking for a technical tool to stop spam may be asking the wrong question. If spam is a social problem, it may require a social solution, which in cyberspace means technical support for social requirements (Whitworth & Whitworth, 2004).

Author(s):  
Brian Whitworth

Spam, undesired and usually unsolicited e-mail, has been a growing problem for some time. A 2003 Sunbelt Software poll found spam (or junk mail) has surpassed viruses as the number-one unwanted network intrusion (Townsend & Taphouse, 2003). Time magazine reports that for major e-mail providers, 40 to 70% of all incoming mail is deleted at the server (Taylor, 2003), and AOL reports that 80% of its inbound e-mail, 1.5 to 1.9 billion messages a day, is spam the company blocks. Spam is the e-mail consumer’s number-one complaint (Davidson, 2003). Despite Internet service provider (ISP) filtering, up to 30% of in-box messages are spam. While each of us may only take seconds (or minutes) to deal with such mail, over billions of cases the losses are significant. A Ferris Research report estimates spam 2003 costs for U.S. companies at $10 billion (Bekker, 2003). While improved filters send more spam to trash cans, ever more spam is sent, consuming an increasing proportion of network resources. Users shielded behind spam filters may notice little change, but the Internet transmitted-spam percentage has been steadily growing. It was 8% in 2001, grew from 20% to 40% in 6 months over 2002 to 2003, and continues to grow (Weiss, 2003). In May 2003, the amount of spam e-mail exceeded nonspam for the first time, that is, over 50% of transmitted e-mail is now spam (Vaughan-Nichols, 2003). Informal estimates for 2004 are over 60%, with some as high as 80%. In practical terms, an ISP needing one server for customers must buy another just for spam almost no one reads. This cost passes on to users in increased connection fees. Pretransmission filtering could reduce this waste, but creates another problem: spam false positives, that is, valid e-mail filtered as spam. If you accidentally use spam words, like enlarge, your e-mail may be filtered. Currently, receivers can recover false rejects from their spam filter’s quarantine area, but filtering before transmission means the message never arrives at all, so neither sender nor receiver knows there is an error. Imagine if the postal mail system shredded unwanted mail and lost mail in the process. People could lose confidence that the mail will get through. If a communication environment cannot be trusted, confidence in it can collapse. Electronic communication systems sit on the horns of a dilemma. Reducing spam increases delivery failure rate, while guaranteeing delivery increases spam rates. Either way, by social failure of confidence or technical failure of capability, spam threatens the transmission system itself (Weinstein, 2003). As the percentage of transmitted spam increases, both problems increase. If spam were 99% of sent mail, a small false-positive percentage becomes a much higher percentage of valid e-mail that failed. The growing spam problem is recognized ambivalently by IT writers who espouse new Bayesian spam filters but note, “The problem with spam is that it is almost impossible to define” (Vaughan-Nichols, 2003, p. 142), or who advocate legal solutions but say none have worked so far. The technical community seems to be in a state of denial regarding spam. Despite some successes, transmitted spam is increasing. Moral outrage, spam blockers, spamming the spammers, black and white lists, and legal responses have slowed but not stopped it. Spam blockers, by hiding the problem from users, may be making it worse, as a Band-Aid covers but does not cure a systemic sore. Asking for a technical tool to stop spam may be asking the wrong question. If spam is a social problem, it may require a social solution, which in cyberspace means technical support for social requirements (Whitworth & Whitworth, 2004).


Author(s):  
Kevin Curran

Spam in the computer does not simply mean ads. Spam is any message, article, or ad that repeats itself an unacceptable number of times so that it causes annoyance. The content of the spam is of no importance. It could contain your simple “Make Money Fast” hyperlink or a beautiful piece of poetry, but if the message is continuously repeated it becomes spam. The term spam is thought to have been taken from a famous Monty Python sketch. In that sketch spam came with everything the people ordered and the waitress would be constantly saying the word spam. Therefore the meaning of spam is something that repeats itself causing much anger or annoyance. Spam can be categorized as follows: • Junk mail: Mass mailings from legitimate businesses that is unwanted. • Noncommercial spam: Mass mailings of unsolicited messages without an apparent commercial motive including chain letters, urban legends, and joke collections. • Offensive and pornographic spam: Mass mailings of “adult” advertisements or pornographic pictures. • Spam scams: Mass mailings of fraudulent messages or those designed to con people out of personal information for the purpose of identity theft and other criminal acts. • Virus spam: Mass mailings that contain viruses, Trojans, malicious scripts, and so forth. Spoofing (Schwartz & Garfinkel, 1998) is a technique often used by spammers to make them harder to trace. Trojan viruses embedded in e-mail messages also employ spoofing techniques to ensure the source of the message is more difficult to locate (Ishibashi, Yamai, Abe, & Matsuura, 2003). Spam filters and virus scanners can only eliminate a certain amount of spam and also risk catching legitimate e-mails. As the SoBig virus has demonstrated, virus scanners themselves actually add to the e-mail traffic through notification and bounceback messages. SMTP is flawed in that it allows these e-mail headers to be faked, and does not allow for the sender to be authenticated as the “real” sender of the message (Geer, 2004). This article looks at a new type of spam known as spam over Internet telephony (SPIT).


Author(s):  
Philip E. Steinberg ◽  
Darren Purcell

Electronic communications refer to forms of communication where ideas and information are embedded in spatially mobile electronic signals. These include the internet, telephony, television, and radio. Electronic communications are linked to state power in a complex and, at times, contradictory manner. More specifically, a tension exists between divergent pressures toward constructing electronic communication spaces as spaces of state power, as spaces of escape, and as spaces for contesting state power. On the one hand, states often invest in infrastructure and empower regulatory institutions as they seek to intensify their presence within national territory, for example, or project their influence beyond territorial borders. The widespread use of electronic communication technologies to facilitate governmental power is especially evident in the realm of cyberwarfare. E-government platforms have also been created to foster interaction with the state through electronic means. On the other hand, communication systems thrive through the idealization (and, ideally, the regulatory construction) of a space without borders, whereby individuals might bypass, or even actively work to subvert, state authority. Just as the internet has been seen as a means for state power to monitor the everyday lives and subjectivities of the citizenry, it has also been employed as a tool for democratization. Various institutions have emerged to govern specific electronic communication networks, including those that are focused on reproducing the power of individual states, those that operate in the realm of intergovernmental organizations, those that devolve power to actors in local government, and those that empower corporations or civil society.


Author(s):  
Michail Yu. Maslov ◽  
Yuri M. Spodobaev

Telecommunications industry evolution shows the highest rates of transition to high-tech systems and is accompanied by a trend of deep mutual penetration of technologies - convergence. The dominant telecommunication technologies have become wireless communication systems. The widespread use of modern wireless technologies has led to the saturation of the environment with technological electromagnetic fields and the actualization of the problems of protecting the population from them. This fundamental restructuring has led to a uniform dense placement of radiating fragments of network technologies in the mudflow areas. The changed parameters of the emitted fields became the reason for the revision of the regulatory and methodological support of electromagnetic safety. A fragmented structural, functional and parametric analysis of the problem of protecting the population from the technological fields of network technologies revealed uncertainty in the interpretation of real situations, vulnerability, weakness and groundlessness of the methodological basis of sanitary-hygienic approaches. It is shown that this applies to all stages of the electromagnetic examination of the emitting fragments of network technologies. Distrust arises on the part of specialists and the population in not only the system of sanitary-hygienic control, but also the safety of modern network technologies is being called into question. Growing social tensions and radio phobia are everywhere accompanying the development of wireless communication technologies. The basis for solving almost all problems of protecting the population can be the transfer of subjective methods and means of monitoring and sanitary-hygienic control of electromagnetic fields into the field of IT.


2021 ◽  
Vol 30 (1) ◽  
pp. 728-738
Author(s):  
Dmitry Gura ◽  
Victor Rukhlinskiy ◽  
Valeriy Sharov ◽  
Anatoliy Bogoyavlenskiy

Abstract Over the past decade, unmanned aerial vehicles (UAVs) have received increasing attention and are being used in the areas of harvesting, videotaping, and the military industry. In this article, the consideration is focused on areas where video recording is required for ground inspections. This paper describes modern communication technologies and systems that enable interaction and data exchange between UAVs and a ground control station (GCS). This article focuses on different architectures of communication systems, establishing the characteristics of each to identify the preferred architecture that does not require a significant consumption of resources and whose data transmission is reliable. A coherent architecture that includes multiple UAVs, wireless sensor networks, cellular networks, GCSs, and satellite network to duplicate communications for enhanced system security has been offered. Some reliability problems have been discussed, the solution of which was suggested to be a backup connection via satellite, i.e., a second connection. This study focused not only on the communication channels but also on the data exchanged between system components, indicating the purpose of their application. Some of the communication problems and shortcomings of various systems, as well as further focus areas and improvement recommendations were discussed.


Author(s):  
Rafael L. Gomes ◽  
Artur Urbano ◽  
Francisco R. P. da Ponte ◽  
Luiz F. Bittencourt ◽  
Edmundo R. M. Madeira

Temida ◽  
2013 ◽  
Vol 16 (1) ◽  
pp. 151-162
Author(s):  
Vida Vilic

Global social networks contributed to the creation of new, inconspicuous, technically perfect shape of criminality which is hard to suppress because of its intangible characteristics. The most common forms of virtual communications? abuse are: cyberstalking and harassment, identity theft, online fraud, manipulation and misuse of personal information and personal photos, monitoring e-mail accounts and spamming, interception and recording of chat rooms. Cyberstalking is defined as persistent and targeted harassment of an individual by using electronic communication. The victim becomes insecure, frightened, intimidated and does not figure out the best reaction which will terminate the harassment. The aim of this paper is to emphasize the importance and necessity of studying cyberstalking and to point out its forms in order to find the best ways to prevent this negative social phenomenon. Basic topics that will be analyzed in this paper are the various definitions of cyberstalking, forms of cyberstalking, and the most important characteristics of victims and perpetators.


Author(s):  
Goran Z. Marković

Incorporation of advanced info-communication technologies into vehicular environment currently captures a large attention by numerous investigators, telecommunications operators, traffic safety regulatory institutions, car industry manufacturers and other interested participants. In this paper, we overview of some prospective wireless communication technologies, such as the DSRC (Dedicated Short Range Communications) and advanced LTE (Long Term Evolution) mobile communication systems, which are considered as two promising candidates to support future traffic safety applications in vehicular environment is presented. The communication requirements of some active traffic safety applications are pointed. A summary of various types of communications for intelligent VCS (Vehicular Communication System) applications is given. Some future directions and challenging issues for implementing traffic safety applications are also discussed. Our goal is to demonstrate the growing impact and importance of modern communication technologies in achieving future traffic accident-free roads.


Sign in / Sign up

Export Citation Format

Share Document