Impact of Deep Learning Techniques in IoT

Author(s):  
Chandra Vadhana ◽  
Shanthi Bala P. ◽  
Immanuel Zion Ramdinthara

Deep learning models can achieve more accuracy sometimes that exceed human-level performance. It is crucial for safety-critical applications such as driverless cars, aerospace, defence, medical research, and industrial automation. Most of the deep learning methods mimic the neural network. It has many hidden layers and creates patterns for decision making and it is a subset of machine learning that performs end-to-end learning and has the capability to learn unsupervised data and also provides very flexible, learnable framework for representing the visual and linguistic information. Deep learning has greatly changed the way and computing devices processes human-centric content such as speech, image recognition, and natural language processing. Deep learning plays a major role in IoT-related services. The amalgamation of deep learning to the IoT environment makes the complex sensing and recognition tasks easier. It helps to automatically identify patterns and detect anomalies that are generated by IoT devices. This chapter discusses the impact of deep learning in the IoT environment.

Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-23
Author(s):  
Basim Mahbooba ◽  
Radhya Sahal ◽  
Wael Alosaimi ◽  
Martin Serrano

To design and develop AI-based cybersecurity systems (e.g., intrusion detection system (IDS)), users can justifiably trust, one needs to evaluate the impact of trust using machine learning and deep learning technologies. To guide the design and implementation of trusted AI-based systems in IDS, this paper provides a comparison among machine learning and deep learning models to investigate the trust impact based on the accuracy of the trusted AI-based systems regarding the malicious data in IDs. The four machine learning techniques are decision tree (DT), K nearest neighbour (KNN), random forest (RF), and naïve Bayes (NB). The four deep learning techniques are LSTM (one and two layers) and GRU (one and two layers). Two datasets are used to classify the IDS attack type, including wireless sensor network detection system (WSN-DS) and KDD Cup network intrusion dataset. A detailed comparison of the eight techniques’ performance using all features and selected features is made by measuring the accuracy, precision, recall, and F1-score. Considering the findings related to the data, methodology, and expert accountability, interpretability for AI-based solutions also becomes demanded to enhance trust in the IDS.


2021 ◽  
Vol 22 (15) ◽  
pp. 7911
Author(s):  
Eugene Lin ◽  
Chieh-Hsin Lin ◽  
Hsien-Yuan Lane

A growing body of evidence currently proposes that deep learning approaches can serve as an essential cornerstone for the diagnosis and prediction of Alzheimer’s disease (AD). In light of the latest advancements in neuroimaging and genomics, numerous deep learning models are being exploited to distinguish AD from normal controls and/or to distinguish AD from mild cognitive impairment in recent research studies. In this review, we focus on the latest developments for AD prediction using deep learning techniques in cooperation with the principles of neuroimaging and genomics. First, we narrate various investigations that make use of deep learning algorithms to establish AD prediction using genomics or neuroimaging data. Particularly, we delineate relevant integrative neuroimaging genomics investigations that leverage deep learning methods to forecast AD on the basis of incorporating both neuroimaging and genomics data. Moreover, we outline the limitations as regards to the recent AD investigations of deep learning with neuroimaging and genomics. Finally, we depict a discussion of challenges and directions for future research. The main novelty of this work is that we summarize the major points of these investigations and scrutinize the similarities and differences among these investigations.


Sensors ◽  
2021 ◽  
Vol 21 (15) ◽  
pp. 5039
Author(s):  
Tae-Hyun Kim ◽  
Hye-Rin Kim ◽  
Yeong-Jun Cho

In this study, we present a framework for product quality inspection based on deep learning techniques. First, we categorize several deep learning models that can be applied to product inspection systems. In addition, we explain the steps for building a deep-learning-based inspection system in detail. Second, we address connection schemes that efficiently link deep learning models to product inspection systems. Finally, we propose an effective method that can maintain and enhance a product inspection system according to improvement goals of the existing product inspection systems. The proposed system is observed to possess good system maintenance and stability owing to the proposed methods. All the proposed methods are integrated into a unified framework and we provide detailed explanations of each proposed method. In order to verify the effectiveness of the proposed system, we compare and analyze the performance of the methods in various test scenarios. We expect that our study will provide useful guidelines to readers who desire to implement deep-learning-based systems for product inspection.


Sensors ◽  
2021 ◽  
Vol 21 (15) ◽  
pp. 4953
Author(s):  
Sara Al-Emadi ◽  
Abdulla Al-Ali ◽  
Abdulaziz Al-Ali

Drones are becoming increasingly popular not only for recreational purposes but in day-to-day applications in engineering, medicine, logistics, security and others. In addition to their useful applications, an alarming concern in regard to the physical infrastructure security, safety and privacy has arisen due to the potential of their use in malicious activities. To address this problem, we propose a novel solution that automates the drone detection and identification processes using a drone’s acoustic features with different deep learning algorithms. However, the lack of acoustic drone datasets hinders the ability to implement an effective solution. In this paper, we aim to fill this gap by introducing a hybrid drone acoustic dataset composed of recorded drone audio clips and artificially generated drone audio samples using a state-of-the-art deep learning technique known as the Generative Adversarial Network. Furthermore, we examine the effectiveness of using drone audio with different deep learning algorithms, namely, the Convolutional Neural Network, the Recurrent Neural Network and the Convolutional Recurrent Neural Network in drone detection and identification. Moreover, we investigate the impact of our proposed hybrid dataset in drone detection. Our findings prove the advantage of using deep learning techniques for drone detection and identification while confirming our hypothesis on the benefits of using the Generative Adversarial Networks to generate real-like drone audio clips with an aim of enhancing the detection of new and unfamiliar drones.


Agronomy ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 646
Author(s):  
Bini Darwin ◽  
Pamela Dharmaraj ◽  
Shajin Prince ◽  
Daniela Elena Popescu ◽  
Duraisamy Jude Hemanth

Precision agriculture is a crucial way to achieve greater yields by utilizing the natural deposits in a diverse environment. The yield of a crop may vary from year to year depending on the variations in climate, soil parameters and fertilizers used. Automation in the agricultural industry moderates the usage of resources and can increase the quality of food in the post-pandemic world. Agricultural robots have been developed for crop seeding, monitoring, weed control, pest management and harvesting. Physical counting of fruitlets, flowers or fruits at various phases of growth is labour intensive as well as an expensive procedure for crop yield estimation. Remote sensing technologies offer accuracy and reliability in crop yield prediction and estimation. The automation in image analysis with computer vision and deep learning models provides precise field and yield maps. In this review, it has been observed that the application of deep learning techniques has provided a better accuracy for smart farming. The crops taken for the study are fruits such as grapes, apples, citrus, tomatoes and vegetables such as sugarcane, corn, soybean, cucumber, maize, wheat. The research works which are carried out in this research paper are available as products for applications such as robot harvesting, weed detection and pest infestation. The methods which made use of conventional deep learning techniques have provided an average accuracy of 92.51%. This paper elucidates the diverse automation approaches for crop yield detection techniques with virtual analysis and classifier approaches. Technical hitches in the deep learning techniques have progressed with limitations and future investigations are also surveyed. This work highlights the machine vision and deep learning models which need to be explored for improving automated precision farming expressly during this pandemic.


Author(s):  
S. Arokiaraj ◽  
Dr. N. Viswanathan

With the advent of Internet of things(IoT),HA (HA) recognition has contributed the more application in health care in terms of diagnosis and Clinical process. These devices must be aware of human movements to provide better aid in the clinical applications as well as user’s daily activity.Also , In addition to machine and deep learning algorithms, HA recognition systems has significantly improved in terms of high accurate recognition. However, the most of the existing models designed needs improvisation in terms of accuracy and computational overhead. In this research paper, we proposed a BAT optimized Long Short term Memory (BAT-LSTM) for an effective recognition of human activities using real time IoT systems. The data are collected by implanting the Internet of things) devices invasively. Then, proposed BAT-LSTM is deployed to extract the temporal features which are then used for classification to HA. Nearly 10,0000 dataset were collected and used for evaluating the proposed model. For the validation of proposed framework, accuracy, precision, recall, specificity and F1-score parameters are chosen and comparison is done with the other state-of-art deep learning models. The finding shows the proposed model outperforms the other learning models and finds its suitability for the HA recognition.


2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Juncai Li ◽  
Xiaofei Jiang

Molecular property prediction is an essential task in drug discovery. Most computational approaches with deep learning techniques either focus on designing novel molecular representation or combining with some advanced models together. However, researchers pay fewer attention to the potential benefits in massive unlabeled molecular data (e.g., ZINC). This task becomes increasingly challenging owing to the limitation of the scale of labeled data. Motivated by the recent advancements of pretrained models in natural language processing, the drug molecule can be naturally viewed as language to some extent. In this paper, we investigate how to develop the pretrained model BERT to extract useful molecular substructure information for molecular property prediction. We present a novel end-to-end deep learning framework, named Mol-BERT, that combines an effective molecular representation with pretrained BERT model tailored for molecular property prediction. Specifically, a large-scale prediction BERT model is pretrained to generate the embedding of molecular substructures, by using four million unlabeled drug SMILES (i.e., ZINC 15 and ChEMBL 27). Then, the pretrained BERT model can be fine-tuned on various molecular property prediction tasks. To examine the performance of our proposed Mol-BERT, we conduct several experiments on 4 widely used molecular datasets. In comparison to the traditional and state-of-the-art baselines, the results illustrate that our proposed Mol-BERT can outperform the current sequence-based methods and achieve at least 2% improvement on ROC-AUC score on Tox21, SIDER, and ClinTox dataset.


2021 ◽  
Vol 9 (2) ◽  
pp. 1051-1052
Author(s):  
K. Kavitha, Et. al.

Sentiments is the term of opinion or views about any topic expressed by the people through a source of communication. Nowadays social media is an effective platform for people to communicate and it generates huge amount of unstructured details every day. It is essential for any business organization in the current era to process and analyse the sentiments by using machine learning and Natural Language Processing (NLP) strategies. Even though in recent times the deep learning strategies are becoming more familiar due to higher capabilities of performance. This paper represents an empirical study of an application of deep learning techniques in Sentiment Analysis (SA) for sarcastic messages and their increasing scope in real time. Taxonomy of the sentiment analysis in recent times and their key terms are also been highlighted in the manuscript. The survey concludes the recent datasets considered, their key contributions and the performance of deep learning model applied with its primary purpose like sarcasm detection in order to describe the efficiency of deep learning frameworks in the domain of sentimental analysis.


Sign in / Sign up

Export Citation Format

Share Document