Natural Brains and Motivated, Emotional Mind

We know that the brain is the seat of the mind. Constructing the reductive model of the conscious mind requires an indication of the laws according to which the mind emerges from biophysical processes occurring in natural brains. Because in Part I, the authors presented the theoretical model referring to the ideal structures of the imagined neural network, we now have easier task, because we need to indicate in the brains of the living beings those processes that functionally correspond to our postulates. Such suitability is not guaranteed by known processes occurring in specialized parts of the brain. The role of the primary sensory areas is a detailed analysis of sensory stimuli with specific modality. They result in analysis of the meaning of all useful stimuli and their interpretation used in various parts of the cortex. The high specialization of individual cortex areas is striking and are the result of evolutionary development of the brain. New brain structures, such as the new cortex, were added on the outskirts of existing structures, improving their performance in the ever more demanding environments, where other intelligent beings ravened. But even as we know the brain organization, we struggle to understand how it works. How neurons that make the brain work together to create the conscious mind. To discover functionally effective processes in the brain, one need to reach for the biophysical properties of the astrocyt-neural network. In this chapter, the authors suggest that some concepts of neuro-electro-dynamics and the phenomena of neuro- and synapto-genesis as well as synaptic couplings may explain the processes of categorization, generalization and association leading to the formation of extensive, semihierarchical brain structures constituting neural representations of perceptions, objects and phenomena. Natural brains meet the embodiment condition. They are products of evolution, so they have intentionality, their own goals and needs. So they can naturally show emotions, drives and instincts that motivate to act. This determines the nature of constructed mental representations. They are the subject of psychological research, which shows the motivation of pain and pleasure in the field of intelligent activities, as well as the motivation of curiosity and the need for understanding in the domain of propositional and phenomenal consciousness. They describe the way pain is felt in organisms as basic quale. The role of other qualia for “how-it-is-like to feel something” and their subjective character was explained, as well as their interspecies specificity was characterized. In this chapter, the authors present an elementary biophysical phenomenon, that is a flash of consciousness. This phenomenon is synaptic coupling formed in the course of learning. They justify that the stream of such phenomena is the foundation of consciousness. They also point out that the astrocytic-neural network meets all the conditions required to generate conscious sensations.

2021 ◽  
Vol 22 (11) ◽  
pp. 6071
Author(s):  
Suzanne Gascon ◽  
Jessica Jann ◽  
Chloé Langlois-Blais ◽  
Mélanie Plourde ◽  
Christine Lavoie ◽  
...  

Alzheimer’s disease (AD) is a devastating neurodegenerative disease characterized by progressive neuron losses in memory-related brain structures. The classical features of AD are a dysregulation of the cholinergic system, the accumulation of amyloid plaques, and neurofibrillary tangles. Unfortunately, current treatments are unable to cure or even delay the progression of the disease. Therefore, new therapeutic strategies have emerged, such as the exogenous administration of neurotrophic factors (e.g., NGF and BDNF) that are deficient or dysregulated in AD. However, their low capacity to cross the blood–brain barrier and their exorbitant cost currently limit their use. To overcome these limitations, short peptides mimicking the binding receptor sites of these growth factors have been developed. Such peptides can target selective signaling pathways involved in neuron survival, differentiation, and/or maintenance. This review focuses on growth factors and their derived peptides as potential treatment for AD. It describes (1) the physiological functions of growth factors in the brain, their neuronal signaling pathways, and alteration in AD; (2) the strategies to develop peptides derived from growth factor and their capacity to mimic the role of native proteins; and (3) new advancements and potential in using these molecules as therapeutic treatments for AD, as well as their limitations.


Author(s):  
Hans Liljenström

AbstractWhat is the role of consciousness in volition and decision-making? Are our actions fully determined by brain activity preceding our decisions to act, or can consciousness instead affect the brain activity leading to action? This has been much debated in philosophy, but also in science since the famous experiments by Libet in the 1980s, where the current most common interpretation is that conscious free will is an illusion. It seems that the brain knows, up to several seconds in advance what “you” decide to do. These studies have, however, been criticized, and alternative interpretations of the experiments can be given, some of which are discussed in this paper. In an attempt to elucidate the processes involved in decision-making (DM), as an essential part of volition, we have developed a computational model of relevant brain structures and their neurodynamics. While DM is a complex process, we have particularly focused on the amygdala and orbitofrontal cortex (OFC) for its emotional, and the lateral prefrontal cortex (LPFC) for its cognitive aspects. In this paper, we present a stochastic population model representing the neural information processing of DM. Simulation results seem to confirm the notion that if decisions have to be made fast, emotional processes and aspects dominate, while rational processes are more time consuming and may result in a delayed decision. Finally, some limitations of current science and computational modeling will be discussed, hinting at a future development of science, where consciousness and free will may add to chance and necessity as explanation for what happens in the world.


Author(s):  
Yingxu Wang

Eyes as the unique organ possess intensively direct connections to the brain and dynamically perceptual accessibility to the mind. This paper analyzes the cognitive mechanisms of eyes not only as the sensory of vision, but also the browser of internal memory in thinking and perception. The browse function of eyes is created by abstract conditioning of the eye's tracking pathway for accessing internal memories, which enables eye movements to function as the driver of the perceptive thinking engine of the brain. The dual mechanisms of the eyes as both the external sensor of the brain and the internal browser of the mind are explained based on evidences and cognitive experiences in cognitive informatics, neuropsychology, cognitive science, and brain science. The finding on the experiment's internal browsing mechanism of eyes reveals a crucial role of eyes interacting with the brain for accessing internal memory and the cognitive knowledge base in thinking, perception, attention, consciousness, learning, memorization, and inference.


2016 ◽  
Vol 07 (S 01) ◽  
pp. S076-S079 ◽  
Author(s):  
Ashok Munivenkatappa ◽  
Amit Agrawal

ABSTRACTDegree of recovery after traumatic brain injury is highly variable that lasts for many weeks to months. The evidence of brain structures involved in recovery mechanisms is limited. This review highlights evidence of the brain structure particularly thalamus in neuroplasticity mechanism. Thalamus with its complex global networking has potential role in refining the cortical and other brain structures. Thalamic nuclei activation both naturally or by neurorehabilitation in injured brain can enhance and facilitate the improvement of posttraumatic symptoms. This review provides evidence from literature that thalamus plays a key role in recovery mechanism after injury. The study also emphasize that thalamus should be specifically targeted in neurorehabilitation following brain injury.


Author(s):  
Diana Deutsch

In this groundbreaking synthesis of art and science, Diana Deutsch, one of the world’s leading experts on the psychology of music, shows how illusions of music and speech – many of which she discovered - have fundamentally altered thinking about the brain. These astonishing illusions show that people can differ strikingly in how they hear musical patterns - differences that reflect both variations in brain organization and influences of language on music perception. They lead Deutsch to examine questions such as: When an orchestra performs a symphony, what is the ‘real’ music? Is it in the mind of the composer, or the conductor, or different members of the audience? Deutsch also explores extremes of musical ability, and other rare responses to music and speech. Why is perfect pitch so rare? Why are some people unable to recognize simple tunes? Why do some people hallucinate music or speech? Why do we hear phantom words and phrases? Why are most people subject to stuck tunes, or ‘earworms’? Why do we hear a spoken phrase as sung just because it is presented repeatedly? In evaluating these questions, she also shows how music and speech are intertwined, and argues that they stem from an early form of communication that had elements of both. Many of the illusions described here are so striking and paradoxical that you need to hear them to believe them. So the book enables you to listen to the sounds that are described while reading about them.


2014 ◽  
Vol 37 (6) ◽  
pp. 563-564 ◽  
Author(s):  
Tobias A. Mattei

AbstractIn self-adapting dynamical systems, a significant improvement in the signaling flow among agents constitutes one of the most powerful triggering events for the emergence of new complex behaviors. Ackermann and colleagues' comprehensive phylogenetic analysis of the brain structures involved in acoustic communication provides further evidence of the essential role which speech, as a breakthrough signaling resource, has played in the evolutionary development of human cognition viewed from the standpoint of complex adaptive system analysis.


2020 ◽  
Vol 66 (5) ◽  
pp. 419-422
Author(s):  
M.I. Airapetov ◽  
S.O. Eresco ◽  
A.A. Lebedev ◽  
E.R. Bychkov ◽  
P.D. Shabanov

We studied the effects of acute, subacute, and chronic alcohol treatment of rats on the content of fibroblast growth factor 2 (FGF2) mRNA in various brain structures. Results suggest a possible role of FGF2 in the functioning of dopaminergic neurons in the midbrain. In our experiment, ethanol treatment of rats was accompanied by an increase in the FGF2 mRNA level in the emotiogenic structures of the brain. This effect was blocked by pretreatment of animals with chlorpromazine. This suggests FGF2 involvement in the mechanisms of alcohol dependence and can be considered as a possible diagnostic and therapeutic target in alcoholism.


1993 ◽  
Vol 03 (02) ◽  
pp. 279-291 ◽  
Author(s):  
B. DOYON ◽  
B. CESSAC ◽  
M. QUOY ◽  
M. SAMUELIDES

The occurrence of chaos in recurrent neural networks is supposed to depend on the architecture and on the synaptic coupling strength. It is studied here for a randomly diluted architecture. We produce a bifurcation parameter independent of the connectivity that allows a sustained activity and the occurrence of chaos when reaching a critical value. Even for weak connectivity and small size, we find numerical results in accordance with the theoretical ones previously established for fully connected infinite sized networks. Moreover the route towards chaos is numerically checked to be a quasiperiodic one, whatever the type of the first bifurcation is. In the discussion, we connect these results to some recent theoretical results about highly diluted networks. Hints are provided for further investigations to elicit the role of chaotic dynamics in the cognitive processes of the brain.


2017 ◽  
Vol 40 (3) ◽  
pp. 197-220
Author(s):  
Jonas Gonçalves Coelho

Abstract: Interpreting results of contemporary neuroscientif studies, I present a non-reductive physicalist account of mind-brain relationship from which the criticism of unintelligibility ascribed to the notion of mental causation is considered. Assuming that a paradigmatic criticism addressed to the notion of mental causation is that presented by Jaegwon Kim’s analysis on the theory of mind-body supervenience, I present his argument arguing that it encompasses a formulation of the problem of mental causation, which leads to difficulties by him pointed. To ask "how mental events, being a non-physical property of the brain, could act causally on brain structure and functioning?", is not to treat the mind as a property of the brain, but as a Cartesian substance. I argue that, rather than asking "how does mind could act causally on the brain?", as if the mind were something apart and independent of the brain, it would be more in line with a non-reductive physicalist view to ask "how the brain, guided by its mind, could act causally on itself?". To justify this last formulation of the problem of mental causation, I propose a "double face view", which consists in considering the consciousness as the essential property of the mind, and mind and brain as inseparable, dependent and irreducible faces. It means, in general terms, that the conscious mind is the result of brain structure and activity - "conscious mind as brain" - and that the brain, using its conscious mind as a guide to its actions, interacts with its body, and with the physical and sociocultural environment, constructing and being constructed by both - "brain as conscious mind".


2010 ◽  
Vol 12 (4) ◽  
pp. 433-448 ◽  

Emotion and cognition have been viewed as largely separate entities in the brain. Within this framework, significant progress has been made in understanding specific aspects of behavior. Research in the past two decades, however, has started to paint a different picture of brain organization, one in which network interactions are key to understanding complex behaviors. From both basic and clinical perspectives, the characterization of cognitive-emotional interactions constitutes a fundamental issue in the investigation of the mind and brain. This review will highlight the interactive and integrative potential that exists in the brain to bring together the cognitive and emotional domains. First, anatomical evidence will be provided, focusing on structures such as hypothalamus, basal forebrain, amygdala, cingulate cortex, orbitofrontal cortex, and insula. Data on functional interactions will then be discussed, followed by a discussion of a dual competition framework, which describes cognitive-emotional interactions in terms of perceptual and cognitive competition mechanisms.


Sign in / Sign up

Export Citation Format

Share Document