Machine Learning and Convolution Neural Network Approaches to Plant Leaf Recognition

Author(s):  
Rajesh K. V. N. ◽  
Lalitha Bhaskari D.

Plants are very important for the existence of human life. The total number of plant species is nearing 400 thousand as of date. With such a huge number of plant species, there is a need for intelligent systems for plant species recognition. The leaf is one of the most important and prominent parts of a plant and is available throughout the year. Leaf plays a major role in the identification of plants. Plant leaf recognition (PLR) is the process of automatically recognizing the plant species based on the image of the plant leaf. Many researchers have worked in this area of PLR using image processing, feature extraction, machine learning, and convolution neural network techniques. As a part of this chapter, the authors review several such latest methods of PLR and present the work done by various authors in the past five years in this area. The authors propose a generalized architecture for PLR based on this study and describe the major steps in PLR in detail. The authors then present a brief summary of the work that they are doing in this area of PLR for Ayurvedic plants.

2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Xianfeng Wang ◽  
Chuanlei Zhang ◽  
Shanwen Zhang

Plant species recognition is a critical step in protecting plant diversity. Leaf-based plant species recognition research is important and challenging due to the large within-class difference and between-class similarity of leaves and the rich inconsistent leaves with different sizes, colors, shapes, textures, and venations. Most existing plant leaf recognition methods typically normalize all leaf images to the same size and then recognize them at one scale, which results in unsatisfactory performances. A novel multiscale convolutional neural network with attention (AMSCNN) model is constructed for plant species recognition. In AMSCNN, multiscale convolution is used to learn the low-frequency and high-frequency features of the input images, and an attention mechanism is utilized to capture rich contextual relationships for better feature extraction and improving network training. Extensive experiments on the plant leaf dataset demonstrate the remarkable performance of AMSCNN compared with the hand-crafted feature-based methods and deep-neural network-based methods. The maximum accuracy attained along with AMSCNN is 95.28%.


2020 ◽  
Vol 24 (6) ◽  
pp. 1311-1328
Author(s):  
Jozsef Suto

Nowadays there are hundreds of thousands known plant species on the Earth and many are still unknown yet. The process of plant classification can be performed using different ways but the most popular approach is based on plant leaf characteristics. Most types of plants have unique leaf characteristics such as shape, color, and texture. Since machine learning and vision considerably developed in the past decade, automatic plant species (or leaf) recognition has become possible. Recently, the automated leaf classification is a standalone research area inside machine learning and several shallow and deep methods were proposed to recognize leaf types. From 2007 to present days several research papers have been published in this topic. In older studies the classifier was a shallow method while in current works many researchers applied deep networks for classification. During the overview of plant leaf classification literature, we found an interesting deficiency (lack of hyper-parameter search) and a key difference between studies (different test sets). This work gives an overall review about the efficiency of shallow and deep methods under different test conditions. It can be a basis to further research.


Data & Policy ◽  
2021 ◽  
Vol 3 ◽  
Author(s):  
Munisamy Gopinath ◽  
Feras A. Batarseh ◽  
Jayson Beckman ◽  
Ajay Kulkarni ◽  
Sei Jeong

Abstract Focusing on seven major agricultural commodities with a long history of trade, this study employs data-driven analytics to decipher patterns of trade, namely using supervised machine learning (ML), as well as neural networks. The supervised ML and neural network techniques are trained on data until 2010 and 2014, respectively. Results show the high relevance of ML models to forecasting trade patterns in near- and long-term relative to traditional approaches, which are often subjective assessments or time-series projections. While supervised ML techniques quantified key economic factors underlying agricultural trade flows, neural network approaches provide better fits over the long term.


Author(s):  
Nirmal Yadav

Applying machine learning in life sciences, especially diagnostics, has become a key area of focus for researchers. Combining machine learning with traditional algorithms provides a unique opportunity of providing better solutions for the patients. In this paper, we present study results of applying the Ridgelet Transform method on retina images to enhance the blood vessels, then using machine learning algorithms to identify cases of Diabetic Retinopathy (DR). The Ridgelet transform provides better results for line singularity of image function and, thus, helps to reduce artefacts along the edges of the image. The Ridgelet Transform method, when compared with earlier known methods of image enhancement, such as Wavelet Transform and Contourlet Transform, provided satisfactory results. The transformed image using the Ridgelet Transform method with pre-processing quantifies the amount of information in the dataset. It efficiently enhances the generation of features vectors in the convolution neural network (CNN). In this study, a sample of fundus photographs was processed, which was obtained from a publicly available dataset. In pre-processing, first, CLAHE was applied, followed by filtering and application of Ridgelet transform on the patches to improve the quality of the image. Then, this processed image was used for statistical feature detection and classified by deep learning method to detect DR images from the dataset. The successful classification ratio was 98.61%. This result concludes that the transformed image of fundus using the Ridgelet Transform enables better detection by leveraging a transform-based algorithm and the deep learning.


2020 ◽  
pp. 1-14
Author(s):  
Zhen Huang ◽  
Qiang Li ◽  
Ju Lu ◽  
Junlin Feng ◽  
Jiajia Hu ◽  
...  

<b><i>Background:</i></b> Application and development of the artificial intelligence technology have generated a profound impact in the field of medical imaging. It helps medical personnel to make an early and more accurate diagnosis. Recently, the deep convolution neural network is emerging as a principal machine learning method in computer vision and has received significant attention in medical imaging. <b><i>Key Message:</i></b> In this paper, we will review recent advances in artificial intelligence, machine learning, and deep convolution neural network, focusing on their applications in medical image processing. To illustrate with a concrete example, we discuss in detail the architecture of a convolution neural network through visualization to help understand its internal working mechanism. <b><i>Summary:</i></b> This review discusses several open questions, current trends, and critical challenges faced by medical image processing and artificial intelligence technology.


Symmetry ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2302
Author(s):  
Kaiyuan Jiang ◽  
Xvan Qin ◽  
Jiawei Zhang ◽  
Aili Wang

In the noncooperation communication scenario, digital signal modulation recognition will help people to identify the communication targets and have better management over them. To solve problems such as high complexity, low accuracy and cumbersome manual extraction of features by traditional machine learning algorithms, a kind of communication signal modulation recognition model based on convolution neural network (CNN) is proposed. In this paper, a convolution neural network combines bidirectional long short-term memory (BiLSTM) with a symmetrical structure to successively extract the frequency domain features and timing features of signals and then assigns importance weights based on the attention mechanism to complete the recognition task. Seven typical digital modulation schemes including 2ASK, 4ASK, 4FSK, BPSK, QPSK, 8PSK and 64QAM are used in the simulation test, and the results show that, compared with the classical machine learning algorithm, the proposed algorithm has higher recognition accuracy at low SNR, which confirmed that the proposed modulation recognition method is effective in noncooperation communication systems.


2021 ◽  
Vol 5 (1) ◽  
pp. 21-30
Author(s):  
Rachmat Rasyid ◽  
Abdul Ibrahim

One of the wealth of the Indonesian nation is the many types of ornamental plants. Ornamental plants, for example, the Aglaonema flower, which is much favored by hobbyists of ornamental plants, from homemakers, is a problem to distinguish between types of aglaonema ornamental plants with other ornamental plants. So the authors try to research with the latest technology using a deep learning convolutional neural network method. It is for calcifying aglaonema interest. This research is based on having fascinating leaves and colors. With the study results using the CNN method, the products of aglaonema flowers of Adelia, Legacy, Widuri, RedKochin, Tiara with moderate accuracy value are 56%. In contrast, the aglaonema type Sumatra, RedRuby, has the most accuracy a high of 61%.


Sign in / Sign up

Export Citation Format

Share Document