Effect of Pollution on Physical and Chemical Properties of Soil

Author(s):  
Trinath Biswal ◽  
Junaid Ahmad Malik

The soil is considered to be one of the most important substances for the existence of the biotic community. The quality of the soil is continually degrading due to the continuous exploitation of human activity. The superiority of a soil is rated on the basis of its chemical and physical characteristics. The contaminants added to the soil mainly because of human activity change the usual function and ecological properties and cause of negative impacts on agricultural productivity and soil health. The property of the soil is potentially affected by urban wastes, industrial wastes, sewage water, mining wastes, oil, radioactive wastes, deforestation, and massive use of fertilizers and pesticides. Heavy metal contamination of the soil is a vital environmental problem because it is the cause of adverse effects on the biological community through the contamination of the food chain. A continuous exposure of municipal solid waste (MSW) in the landfill sites causes leachate formation; this is percolated inside the soil leading to the change in properties.

Agronomy ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 448
Author(s):  
Mousumi Mondal ◽  
Benukar Biswas ◽  
Sourav Garai ◽  
Sukamal Sarkar ◽  
Hirak Banerjee ◽  
...  

In modern days, rapid urbanisation, climatic abnormalities, water scarcity and quality degradation vis-à-vis the increasing demand for food to feed the growing population necessitate a more efficient agriculture production system. In this context, farming with zeolites, hydrated naturally occurring aluminosilicates found in sedimentary rocks, which are ubiquitous and environment friendly, has attracted attention in the recent past owing to multidisciplinary benefits accrued from them in agricultural activities. The use of these minerals as soil ameliorants facilitates the improvement of soil’s physical and chemical properties as well as alleviates heavy metal toxicity. Additionally, natural and surface-modified zeolites have selectivity for major essential nutrients, including ammonium (NH4+), phosphate (PO42−), nitrate (NO3−), potassium (K+) and sulphate (SO42−), in their unique porous structure that reduces nutrient leaching. The slow-release nature of zeolites is also beneficial to avail nutrients optimally throughout crop growth. These unique characteristics of zeolites improve the fertilizer and water use efficiency and, subsequently, diminish environmental pollution by reducing nitrate leaching and the emissions of nitrous oxides and ammonia. The aforesaid characteristics significantly improve the growth, productivity and quality of versatile crops, along with maximising resource use efficiency. This literature review highlights the findings of previous studies as well as the prospects of zeolite application for achieving sustenance in agriculture without negotiating the output.


2021 ◽  
pp. 10-24
Author(s):  
C. R. Abah ◽  
C. N. Ishiwu ◽  
J. E. Obiegbuna ◽  
E. F. Okpalanma ◽  
C. S. Anarado

Quality cassava(Manihotesculentus, Crantz) flour is often influenced by process variables such as slice weight and soaking time which may affect its nutritional quality. In this study, the effect of process variables (slice weight and soaking time) on quality of cassava flour was carried out. Cassava root was peeled, washed and cut into varied sizes (25.86 - 54.14 g) and soaked at varied time (7.03 - 40.97 h). The proximate composition, physical and chemical properties of the flour were carried out using standard methods. The result in our findings showed that slice weight and soaking time had significant increase (p<0.05) on the proximate and physico-chemical properties of the flour.The amylose and amylopectin content of the flour increased with increasing soaking time while the hydrogen cyanide content decreased with increase in soaking time. Overall, the quality cassava flour displayed desirable properties for its incorporation into baked goods.


2020 ◽  
Vol 1 (2) ◽  
pp. 7-16
Author(s):  
Winda Amilia ◽  
Andrew Setiawan Rusdianto ◽  
Arma Dwi Novemi

The amount of mango production in Indonesia is quite high, but the quality of postharvest mangoes is still quite low. The quality of the fruit will decline due to contamination; one of the contaminants is fungi. The way to reduce the damage of postharvest products is by coating applications. The purpose of this study was to study the physical, chemical and antifungal activities of harumanis mangoes’s quality which had been given coating during storage that could cause postharvest losses of harumanis mangoes. There are 3 treatments, each of them are respectively the provision of corn based coating  6% tobacco extract, 8% tobacco extract and 10% tobacco extract. The physical and chemical properties of the antifungal coating of tobacco extract made from corn coating for post-harvest damage on harumanis mangoes were obtained by weight loss, texture, colour, respiration rate, vitamin C and total dissolved solid. Preventing coating can prevent damage after harvest and protect the harumanis mango; therefore the quality of the mangoes can be maintained. The best results from the priority with the largest diameter inhibition zone were given corn starch 10% tobacco extract. Then the higher the concentration of extract used, the greater the diameter of the inhibition zone obtained. Based on all the tests performed (physical, chemical, and antifungal) the best treatment from the treatment was obtained that consisted of mangoes with antifungal layers of corn starch 10% tobacco extract. Because the P3 obtained the best results in maintaining physical, chemical content and fungi for 15 days.


2004 ◽  
pp. 79-90
Author(s):  
Vesna Vratusa

Efficient nursery production of woody plants, as well as the level of their successful application in urban green spaces, greatly depends upon properties of substrates in which these individuals grow, develop and endure. Furthermore, quality of substrate does not only affect the quality of future product (plant individual or green space), but distinctly determines its price. This element, extremely significant for all countries in transition, thus Serbia as well, commands finding ways of making qualitative, but least expensive substrate. The most logical solution is to use mixtures/substrates of precisely defined properties, composed of domestic components. Results presented in this paper imply that it is possible to create precisely such standard mixtures from domestic resources at relatively low cost, adjusted to needs of particular species, which would ultimately lead to successful, non-expensive nursery production and application of produced stock, both on domestic and foreign markets.


FLORESTA ◽  
2020 ◽  
Vol 50 (4) ◽  
pp. 1844
Author(s):  
Guilherme Giesel ◽  
Martha Andreia Brand ◽  
Flaviana Reis Milagres ◽  
Renato Augusto Pereira Damasio

In pulp production, wood in logs is stored for periods that can range from a few weeks to several months. During storage, changes in the wood properties that affect the pulping process and the quality of the pulp may occur. The objective of this study was to determine the ideal timing of wood storage in logs by evaluating the variations (a) in the chemical properties of wood (b) in the parameters of the pulping process and (c) the quality of the Pinus taeda pulp. Logs were stored in an industrial courtyard for 30, 60, 90, 120 and 150 days. In each storage period, the physical and chemical properties of the wood, the cooking parameters, and the properties of the pulp were analyzed. The chemical properties of wood varied throughout storage, but only the solubility in sodium hydroxide showed a positive and significant correlation with storage time. In pulping, the yield and tailings had an inversely proportional correlation with the storage time, while the organic and total solids content had a positive correlation. As for cellulose quality, arabinan and soluble lignin contents did not vary during storage. The mannan content had a positive and significant correlation with the storage time. Taking into account all the variables analyzed, the storage time of P. taeda logs should be up to 30 days.


Author(s):  
Ifra Ashraf ◽  
Shazia Ramzan ◽  
Nowsheeba Rashid ◽  
Ikhlaq A. Mir ◽  
Asima Jillani

Management of solid wastes is a grave concern because of its associated significant negative impacts on quality of the environs. Accretion and putrefaction of solid wastes have potent hazardous effects on biotic and abiotic factors of the environment including human beings. Unmanaged solid wastes especially organic in nature add efficient quantity of greenhouse gases in the atmosphere. For dealing with wastes purely organic in nature, there is a need of an adequate waste management technology to reduce the quantity of organic waste being disposed of traditionally. Composting is an environmentally sound and sustainable approach to manage biodegradable fractions of solid waste. It has received considerable attention in the last few decades because of its potential of redressing the environmental pollution concerns associated with other waste disposal methods. This chapter is aimed to review supremacy of composting over other waste disposal methods.


2018 ◽  
Vol 766 ◽  
pp. 305-310 ◽  
Author(s):  
Chayanee Tippayasam ◽  
Sarochapat Sutikulsombat ◽  
Jamjuree Paramee ◽  
Cristina Leonelli ◽  
Duangrudee Chaysuwan

Geopolymer is a greener alternative cement produced from the reaction of pozzolans and strong alkali solutions. Generally, the cement industry is one of largest producers of CO2that caused global warming. For geopolymer mortar usage, Portland cement is not utilized at all. In this research, geopolymer mortars were prepared by mixing metakaolin, various wastes (fly ash, bagasse ash and rice husk ash) varied as 80:20, 50:50 and 20:80, 15M NaOH, Na2SiO3and sand. The influence of various parameters such as metakaolin to ashes ratios and pozzolans to alkali ratios on engineering properties of metakaolin blended wastes geopolymer mortar were studied. Compressive strength tests were carried out on 25 x 25 x 25 mm3cube geopolymer mortar specimens at 7, 14, 21, 28 and 91 air curing days. Physical and chemical properties were also investigated at the same times. The test results revealed that the highest compressive strength was 20% metakaolin - 80% fly ash geopolymer mortar. When the curing times increases, the compressive strength of geopolymer mortar also increases. The mixing of metakaolin and bagasse ash/rice husk ash presented lower compressive strength but higher water absorption and porosity. For FTIR results, Si-O, Al-O and Si-O-Na+were found. Moreover, the geopolymer mortar could easily plastered on the wall.


2017 ◽  
Vol 2017 ◽  
pp. 1-6 ◽  
Author(s):  
Hao Liu ◽  
Bing Xie ◽  
Yue-lin Qin

The physical and chemical properties such as particle size, montmorillonite content, swelling degree, water absorption, and blue absorption of A, B, and C bentonites were studied under laboratory conditions. The effects of adding different quality and different proportion of bentonite on falling strength, compression strength, and shock temperature of green pellet were investigated. The experimental results show that the montmorillonite content, water absorption, and methylene blue absorption of bentonite-B are the highest. And the quality of bentonite-B is the best, followed by bentonite-C and bentonite-A poor quality. When the amount of bentonite-B reduced from 1.5% to 1.0%, the strength of green pellets and the shock temperature both decrease. As the same proportion of A, B, and C bentonites, the green-ball strength and shock temperature are as follows: bentonite-A > bentonite-B > bentonite-C.


1999 ◽  
Vol 5 (4) ◽  
pp. 285-297 ◽  
Author(s):  
A. Mulet ◽  
J. Benedito ◽  
J. Bon ◽  
N. Sanjuan

Ultrasonic applications can be classified into low intensity or high intensity applications. The latter are used to modify a process or product with ultrasonics, while in low intensity applications the process or product modifies the ultrasonic signal, thus providing information about the product. Low inten sity ultrasonics in food technology can be used to monitor a process (liquid level, flowmeters) or to determine the quality of food products. Since ultrasonic techniques are rapid, non-destructive, easy to automate and relatively inexpensive, the number of applications is rapidly growing in this field. Ultrasonics can also be considered for use in laboratory testing devices to determine physical and chemical properties of foods. Ultrasonics has been used to determine texture, composition and physical state in liquid and solid foods. The commonly measured ultrasonic parameters are velocity, attenua tion and frequency spectrum composition. Velocity is the parameter used most since it is the simplest and most reliable measurement. This paper reviews the basic principles of ultrasonics, the most suit able techniques for each type of application, the testing devices needed to make measurements and the most interesting applications.


FLORESTA ◽  
2013 ◽  
Vol 43 (3) ◽  
pp. 407 ◽  
Author(s):  
Horácia Celina Armando Mula Boene ◽  
Antonio Carlos Nogueira ◽  
Nilton José Sousa ◽  
Dagma Kratz ◽  
Paulo Vitor Dutra de Souza

O objetivo do presente trabalho foi avaliar a viabilidade técnica da utilização de diferentes substratos para a produção de mudas de Sebastiania commersoniana e relacionar suas características físicas e químicas com a qualidade das mudas produzidas. Para tanto, foram formulados 22 substratos, os quais tiveram suas propriedades físicas e químicas avaliadas, sendo a semeadura realizada em tubetes de 120 cm³, acondicionados em casa de sombra, com irrigação controlada. Para a análise dos resultados, foram feitas avaliações de altura, diâmetro de colo, biomassa seca aérea e radicial, facilidade de retirada do tubete, agregação das raízes ao substrato, índice de qualidade de Dickson e relação altura e diâmetro de colo aos 180 dias. De acordo com os resultados obtidos, conclui-se que o melhor substrato testado foi o substrato comercial à base de casca de pinus. Os componentes renováveis, casca de arroz carbonizada, fibra de coco e substrato comercial à base de casca de pinus, apresentaram-se viáveis tecnicamente para produção de mudas de branquilho, enquanto que a casca de arroz carbonizada pura e vermiculita fina não apresentaram viabilidade. No que se refere às propriedades dos substratos, apenas a densidade aparente, pH, Ca e P apresentaram correlação com as variáveis biométricas das mudas. AbstractEffects of different substrates in production of Sebastiania commersoniana seedling. The aim of this research was to evaluate technical feasibility of using different substrates for production of seedlings of Sebastiania commersoniana and relate physical and chemical characteristics to the quality of the produced seedlings. In order to that, 22 substrates were formulated, with their physical and chemical properties evaluated, sowed in tubes of 120 cc, and put in shade, under controlled irrigation. For the results analysis, it evaluated height, stem diameter, air and radicial biomass, ease of removability, root aggregation to the substrate, Dickson quality index, and relation of height and diameter at 180 days. According to the obtained results, the best substrate tested was the commercial pine bark based substrate. The renewable components, carbonized rice hulls, coconut fiber, and commercial pine bark based substrate presented technical feasibility to produce Sebastiania commersoniana seedlings, on the other hand pure carbonized rice hulls and fine vermiculite did not. Towards the properties of the substrates, only bulk density, pH, Ca, and P correlated with biometric variables of the seedlings.Keywords: Branquilho; carbonized rice hulls; coconut fiber; pine bark; forest nursery.


Sign in / Sign up

Export Citation Format

Share Document