Thermal Imaging in Evaluation of the Physical Fitness Level

Author(s):  
Teresa Kasprzyk ◽  
Agata Stanek ◽  
Karolina Sieroń-Stołtny ◽  
Armand Cholewka

The thermoregulation mechanisms during the physical effort can be easily study by using the thermovision. The thermoregulation mechanisms in human body keep the body core temperature on basic level 37 ± 2 oC. However, the question is if there are any differences in skin surface temperature distribution between trainee sportsmen and amateur. Is there any possibility to show the sportsman level of practise using the thermal imaging? Would it be possible to evaluate the efficiency of athlete or evaluate the level of sports possibilities in average amateur who just wants to start cycle training. To find how the thermoregulation mechanisms work the different measurements were done i.e. during the cyclist endurance test for group of male cyclist (intermediate level of cycling skill) and during the Aerobic Circuit Training (ACT) for trainee and amateur group of women.

Author(s):  
Teresa Kasprzyk ◽  
Agata Stanek ◽  
Karolina Sieroń-Stołtny ◽  
Armand Cholewka

The thermoregulation mechanisms during the physical effort can be easily study by using the thermovision. The thermoregulation mechanisms in human body keep the body core temperature on basic level 37 ± 2oC. However, the question is if there are any differences in skin surface temperature distribution between trainee sportsmen and amateur. Is there any possibility to show the sportsman level of practise using the thermal imaging? Would it be possible to evaluate the efficiency of athlete or evaluate the level of sports possibilities in average amateur who just wants to start cycle training. To find how the thermoregulation mechanisms work the different measurements were done i.e. during the cyclist endurance test for group of male cyclist (intermediate level of cycling skill) and during the Aerobic Circuit Training (ACT) for trainee and amateur group of women.


1983 ◽  
Vol 245 (2) ◽  
pp. R293-R297 ◽  
Author(s):  
C. A. Fuller ◽  
M. A. Baker

Many panting mammals can cool the brain below body core temperature during heat stress. Studies on human subjects suggest that primates may also be able selectively to regulate brain temperature. We examined this possibility by measuring hypothalamic (Thy) and colonic (Tco) temperatures of unanesthetized squirrel monkeys (Saimiri sciureus) in two different experiments. First, Thy and Tco were examined at four different ambient temperatures (Ta) between 20 and 36 degrees C. Over this range of Ta, Thy was regulated within a narrower range than Tco. In the cold Ta, Tco was lower than Thy; whereas in warm Ta, Tco was higher than Thy. Second, monkeys maintained at 35 degrees C Ta were acutely exposed to cool air blown on the face or abdomen. Air directed at the face cooled Thy more and faster than Tco, whereas air directed at the abdomen cooled Tco and Thy at the same rate. The second experiment was repeated in anesthetized animals with a thermocouple in the right atrium, and the results showed that this brain cooling was not produced by cooling of blood in the body core. These data demonstrate that the squirrel monkey is capable of selectively regulating Thy. Further the results suggest that venous blood returning from the face may be involved in selective brain cooling in warm environments.


2017 ◽  
Vol 122 (4) ◽  
pp. 933-944 ◽  
Author(s):  
Glen P. Kenny ◽  
Ryan McGinn

Performing exercise, especially in hot conditions, can heat the body, causing significant increases in internal body temperature. To offset this increase, powerful and highly developed autonomic thermoregulatory responses (i.e., skin blood flow and sweating) are activated to enhance whole body heat loss; a response mediated by temperature-sensitive receptors in both the skin and the internal core regions of the body. Independent of thermal control of heat loss, nonthermal factors can have profound consequences on the body’s ability to dissipate heat during exercise. These include the activation of the body’s sensory receptors (i.e., baroreceptors, metaboreceptors, mechanoreceptors, etc.) as well as phenotypic factors such as age, sex, acclimation, fitness, and chronic diseases (e.g., diabetes). The influence of these factors extends into recovery such that marked impairments in thermoregulatory function occur, leading to prolonged and sustained elevations in body core temperature. Irrespective of the level of hyperthermia, there is a time-dependent suppression of the body’s physiological ability to dissipate heat. This delay in the restoration of postexercise thermoregulation has been associated with disturbances in cardiovascular function which manifest most commonly as postexercise hypotension. This review examines the current knowledge regarding the restoration of thermoregulation postexercise. In addition, the factors that are thought to accelerate or delay the return of body core temperature to resting levels are highlighted with a particular emphasis on strategies to manage heat stress in athletic and/or occupational settings.


2015 ◽  
Vol 137 (4) ◽  
Author(s):  
Kaufui Vincent Wong

The body core temperature is a measure of the health and well-being of a person. This temperature seldom varies from the average of 37 °C (98.6 °F) and has been used to gage a person’s wellness at any time. The current work reviews the published health and medical works about this topic, focusing on the effects of hypothermia, especially with respect to neurological issues. The controversy still exists, and the jury is out. A heat transfer researcher’s insight foresees the possible results and calls for more research in the field. In addition, a perspective is provided for a couple of traditional “truths” about related topics that have been challenged in recent times.


1996 ◽  
Vol 134 (6) ◽  
pp. 727-730
Author(s):  
Abdulaziz Alzeer ◽  
Abdullah Al Arifi ◽  
Mohsen El-Hazmi ◽  
Arjumand S Warsy ◽  
Eric S Nylen

Alzeer A, Al Arifi A, El-Hazmi M, Warsy AS, Nylen ES. Thermal regulatory dysfunction of growth hormone in classical heat stroke? Eur J Endocrinol 1996;134:727–30. ISSN 0804–4643 Growth hormone (GH) secretion associated with classical (non-exertional) heat stroke (HS) was evaluated in 26 HS victims and 10 control (non heat-exhausted) subjects during the annual Hajj in Makkah, Saudi Arabia. On admission to the HS treatment unit, the GH level was 1.54 ± 0.14 ng/ml (approximately 3.5-fold higher in the HS victims compared to controls; p = 0.005). The GH levels subsequently declined by 78% by 24 h. The categorized GH response was significantly associated with survival for those subjects with a GH level of < 5.53 ng/ml by 6 h (chi-squared test; p = 0.06). In those patients who died (N = 6), there was a continued increase in GH levels from the time of admission, which peaked at 6 h. In those patients who survived, the GH levels peaked at the time of admission and declined rapidly thereafter. There was a direct correlation of age and GH level upon admission (p = 0.02), as well as to peak GH (p = 0.041). However, there was no relationship of GH level to either body core temperature or the cooling time. In summary, HS induced significant GH secretion. The degree of GH response was not related to the body core temperature and was more pronounced in older individuals and in those that died. Although patients with GH deficiency and HS are characterized by anhidrosis/hypohidrosis, there does not appear to be dysfunction of GH response to heat stress-associated HS. In contrast, a vigorous GH response at 6 h suggested a worse outcome. ES Nylen, Rm GE 246, VAMC, 50 Irving St, NW Washington, DC 20422, USA


Perfusion ◽  
2019 ◽  
Vol 35 (2) ◽  
pp. 96-103 ◽  
Author(s):  
Seyed Mohammad Seyedsaadat ◽  
Silvana F Marasco ◽  
David J Daly ◽  
Robin McEgan ◽  
James Anderson ◽  
...  

Background/objective: Reduction of brain temperature remains the most common method of neuroprotection against ischemic injury employed during cardiac surgery. However, cooling delivered via the cardiopulmonary bypass circuit is brief and cooling the body core along with the brain has been associated with a variety of unwanted effects. This study investigated the feasibility and safety of a novel selective brain cooling approach to induce rapid, brain-targeted hypothermia independent of the cardiopulmonary bypass circuit. Methods: This first-in-human feasibility study enrolled five adults undergoing aortic valve replacement with cardiopulmonary bypass support. During surgery, the NeuroSave system circulated chilled saline within the pharynx and upper esophagus. Brain and body core temperature were continuously monitored. Adverse effects, cardiopulmonary function, and device function were noted. Results: Patient 1 received cooling fluid for an insignificant period, and Patients 2-5 successfully underwent the cooling procedure using the NeuroSave system for 56-89 minutes. Cooling fluid was 12°C for Patients 1-3, 6°C for Patient 4, and 2°C for Patient 5. There were no NeuroSave-related adverse events and no alterations in cardiopulmonary function during NeuroSave use. Brain temperature decreased by 3°C within 15 minutes and remained at least 3.5°C colder than the body core. During a brief episode of hypotension in one patient, the brain cooled an additional 4°C in 2 minutes, briefly reaching 27.4°C. Conclusion: The NeuroSave system can induce rapid brain-targeted hypothermia and simultaneously maintain a favorable body–brain temperature gradient, even during hypotension. Further studies are required to evaluate the function of the system during longer periods of use.


2018 ◽  
Vol 2018 ◽  
pp. 1-8
Author(s):  
Keiichiro Sugimoto ◽  
Hiroaki Takeuchi ◽  
Kazuya Nakagawa ◽  
Yasuhiro Matsuoka

Ginger is known to warm the body. Therefore, we conducted a placebo-controlled crossover trial to investigate the hyperthermic effect of a palatable ginger-containing beverage in healthy women with cold-sensitive extremities. Six women drank 280 mL of 0.07% ginger extract-containing or placebo beverage in a temperature-controlled room (21°C). Their palm temperatures were measured as measure of surface body temperature using a thermographic camera before intake and every 10 min after intake for 60 min. Palm temperature increased immediately following intake of the ginger and placebo beverages. However, palm temperature following intake of the ginger beverage increased for 20 min, while palm temperature following placebo intake decreased again after 10 min. The increased palm temperature following ginger intake was maintained significantly longer than after placebo intake (p < 0.05). In response to a questionnaire, some subjects answered that their increased body temperature was maintained after drinking the ginger beverage. Ginger extract-containing beverage may thus improve cold sensitivity.


Sign in / Sign up

Export Citation Format

Share Document